定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。

简单的阈值-(全局阈值):

Python-OpenCV中提供了阈值(threshold)函数:

cv2.threshold()

函数:第一个参数       src            指原图像,原图像应该是灰度图。

第二个参数         x              指用来对像素值进行分类的阈值。

第三个参数         y              指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值

第四个参数     Methods     指,不同的不同的阈值方法,这些方法包括:

•cv2.THRESH_BINARY             图(1)

•cv2.THRESH_BINARY_INV      图(2)

•cv2.THRESH_TRUNC              图(3)

•cv2.THRESH_TOZERO            图(4)

•cv2.THRESH_TOZERO_INV      图(5)

破折线为将被阈值化的值;虚线为阈值

图(1)

大于阈值的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于阈值的像素点的灰度值设定为0。

图(2)

大于阈值的像素点的灰度值设定为0,而小于该阈值的设定为255。

图(3)

像素点的灰度值小于阈值不改变,大于阈值的灰度值的像素点就设定为该阈值。

图(4)

像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。

图(5)

像素点的灰度值大于该阈值的不进行任何改变,像素点的灰度值小于该阈值的,其灰度值全部变为0。

Python+opencv代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('1.bmp')
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 中值滤波
GrayImage= cv2.medianBlur(GrayImage,)
ret,th1 = cv2.threshold(GrayImage,,,cv2.THRESH_BINARY)
# 为Block size, 5为param1值
th2 = cv2.adaptiveThreshold(GrayImage,,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,,)
th3 = cv2.adaptiveThreshold(GrayImage,,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,,)
titles = ['Gray Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [GrayImage, th1, th2, th3]
for i in xrange():
plt.subplot(,,i+),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

效果图:

自适应阈值:

当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。

cv2.adaptiveThreshold()

函数:第一个参数          src                  指原图像,原图像应该是灰度图。

第二个参数            x                    指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值

第三个参数  adaptive_method  指: CV_ADAPTIVE_THRESH_MEAN_C 或 CV_ADAPTIVE_THRESH_GAUSSIAN_C

第四个参数    threshold_type    指取阈值类型:必须是下者之一                                                                                                                                                                                                                                                                •  CV_THRESH_BINARY,

• CV_THRESH_BINARY_INV

第五个参数    block_size           指用来计算阈值的象素邻域大小: 3, 5, 7, ...

第六个参数          param1           指与方法有关的参数。对方法CV_ADAPTIVE_THRESH_MEAN_C 和 CV_ADAPTIVE_THRESH_GAUSSIAN_C, 它是一个从均值或加权均值提取的常数, 尽管它可以是负数。

自适应阈值:  对方法CV_ADAPTIVE_THRESH_MEAN_C,先求出块中的均值,再减掉param1。

对方法 CV_ADAPTIVE_THRESH_GAUSSIAN_C ,先求出块中的加权和(gaussian), 再减掉param1。

例如:

采用方法 CV_ADAPTIVE_THRESH_MEAN_C,阈值类型:CV_THRESH_BINARY,  阈值的象素邻域大小 block_size 选取3,参数param1  取3和5时:

部分原图像像素值                                                                                              当参数param1为5时
  

部分原图像像素值                                                                                                当参数param1为7时

选取对应领域(3*3)求其均值,然后减去参数param1的值为自适应阈值。测试时求得均值为小数时,貌似进行四舍五入之后再减去参数param1。(可能是我没测试准确,无聊时测试一下,共同学习)

Python+opencv代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('1.bmp')
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 中值滤波
GrayImage= cv2.medianBlur(GrayImage,)
ret,th1 = cv2.threshold(GrayImage,,,cv2.THRESH_BINARY)
# 为Block size, 5为param1值
th2 = cv2.adaptiveThreshold(GrayImage,,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,,)
th3 = cv2.adaptiveThreshold(GrayImage,,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,,)
titles = ['Gray Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [GrayImage, th1, th2, th3]
for i in xrange():
plt.subplot(,,i+),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
 

效果图:

python-opencv 图像二值化,自适应阈值处理的更多相关文章

  1. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

  2. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  3. opencv python:图像二值化

    import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...

  4. opencv图像二值化的函数cvThreshold()。 cvAdaptiveThreshol

    OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* sr ...

  5. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

  6. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  7. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  8. openCV_java 图像二值化

    较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...

  9. Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化  [函数名称]   P分位法图像二值化 [算法说明]   所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...

  10. Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化  [函数名称] Ostu法图像二值化      WriteableBitmap OstuThSegment(Writ ...

随机推荐

  1. 复杂对象类型的WebService高级部分

    从客户端除了传递字符串以外还可以传递复杂对象(对象必须序列化了),List,Map,数组和文件. (1)定义一个对象实现了serializable 接口package cn.com.chenlly.s ...

  2. 冒泡,setinterval,背景图的div绑定事件,匿名函数问题探究

    1.会冒泡到兄弟元素么? $(function(){ $("#a").click(function(){alert("a")}) $("#b" ...

  3. 在Android Studio 和 Eclipse 的 git 插件操作 "代码提交"以及"代码冲突"

    面向对象:曾经使用过SVN的同学. (因为Git 它 可以说是双重的SVN (本地一个服务器,远程一个服务器)),提交代码要有两次步骤,先提交到本地服务器,再把本地服务器在提交到远程服务器. 所以连S ...

  4. Atitit 软件体系的进化,是否需要一个处理中心

    Atitit 软件体系的进化,是否需要一个处理中心 1.1. 进化树上是没有主干的..1 1.2. ,软件进化的行为1::主要就是给新的应用编写新的程序.1 1.3. ,软件进化的行为2::软件的维护 ...

  5. Xilinx vivado迅雷下载地址(所有版本)

    注:其实该方法适用于提取Xilinx官网的任意工具的任意版本的迅雷下载地址 ①进入Xilinx官网,进入Device->Design Tools,选择你想要下载的任意工具.②进入新web页面,右 ...

  6. 【Android】1.2 创建Android模拟器

    分类:C#.Android.VS2015:  创建日期:2016-01-20 调试手机应用程序一般先用模拟器来实现,只是因为每次都发布到手机上调试太麻烦了.当应用程序在模拟器上调试没错后,再发布到手机 ...

  7. android 覆盖安装问题

    1.android中覆盖安装不会导致data/data/package下的数据被删除 2.数据库会有数据库的一套升级机制 3.sharepreference 不会被覆盖,如果在app中有使用Key记录 ...

  8. Pycrypto与RSA密码技术笔记

    密码与通信 密码技术是一门历史悠久的技术.信息传播离不开加密与解密.密码技术的用途主要源于两个方面,加密/解密和签名/验签 在信息传播中,通常有发送者,接受者和窃听者三个角色.假设发送者Master想 ...

  9. spark 分区

    http://stackoverflow.com/questions/39368516/number-of-partitions-of-spark-dataframe

  10. OpenStack大规模部署详解

    https://blog.csdn.net/karamos/article/details/80130443 0.前言今年的2月22日,OpenStack发布了15个版本Ocata. 走过了7年的发展 ...