代码部分

SVM损失函数 & SoftMax损失函数:

注意一下softmax损失的用法:

SVM损失函数:

import numpy as np

def L_i(x, y, W):
'''
非向量化SVM损失计算
:param x: 输入矢量
:param y: 标准分类
:param W: 参数矩阵
:return:
'''
delta = 1.0
scores = W.dot(x)
correct_score = scores[y]
D = W.shap[0]
loss_i = 0.0
for j in range(D):
if j==y:
continue
loss_i += max(0.0, scores[j] - correct_score + delta)
return loss_i def L_i_vectorized(x, y, W):
'''
半向量化SVM损失计算
:param x: 输入矢量
:param y: 标准分类
:param W: 参数矩阵
:return:
'''
delta = 1.0
scores = W.dot(x)
margins = np.maximum(0, scores - scores[y] + delta)
margins[y] = 0
loss_i = np.sum(margins)
return loss_i

softmax分类器:

import numpy as np

# 正常的softmax分类器
f = np.array([123, 456, 789])
# p = np.exp(f) / np.sum(np.exp(f))
# print(p) # 数值稳定化的softmax分类器
f -= np.max(f)
p = np.exp(f) / np.sum(np.exp(f))
print(p)

SoftMax实际应用

练习,softmax 模型:

Note: 你的 softmax(x) 函数应该返回一个形状和x相同的NumPy array类型。

例如,当输入为一个列表或者一维矩阵(用列向量表示一个样本样本)时,比如说以下的:

scores = [1.0, 2.0, 3.0]

应该返回一个同样长度(即3个元素)的一维矩阵:

print softmax(scores)
[ 0.09003057 0.24472847 0.66524096]

对于一个二维矩阵,如以下(列向量表示单个样本),例如:

scores = np.array([[1, 2, 3, 6],
[2, 4, 5, 6],
[3, 8, 7, 6]])

该函数应该返回一个同样大小(3,4)的二维矩阵,如以下:

[[ 0.09003057  0.00242826  0.01587624  0.33333333]
[ 0.24472847 0.01794253 0.11731043 0.33333333]
[ 0.66524096 0.97962921 0.86681333 0.33333333]]

每个样本(列向量)中的概率加起来应当等于 1。你可以用以上的例子来测试你的函数。

ANSWER:

"""Softmax."""

scores = [3.0, 1.0, 0.2]

import numpy as np

def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x)/np.sum(np.exp(x),axis=0) print(softmax(scores)) # Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()

比较好玩的是plt.plot(x, softmax(scores).T)中,后面的转置了,多线画图时,后面的都是要转置的,因为plt必须要求x和y第一维度大小相等:

plt.plot(np.linspace(0,1,100),np.asarray([10*np.linspace(0,2,100),10*np.linspace(0,1,100)]).T,linewidth=2)
# 可以绘图
# 查看一下shape:
np.linspace(0,1,100).shape
# Out[26]:
# (100,)
np.asarray([10*np.linspace(0,2,100),10*np.linspace(0,1,100)]).shape
# Out[25]:
# (2, 100)
# 必须对应x,y的第一维度大小

SoftMax特点

SoftMax(y*10)后分类器会更自信,SoftMax(y/10)后分类器会失去自信(结果概率平均化)

概念部分

损失函数=代价函数=目标函数

svm给出一个得分,softmax给出一个概率。

『cs231n』线性分类器损失函数的更多相关文章

  1. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  2. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  3. cs331n 线性分类器损失函数与最优化

    tip:老师语速超快...痛苦= = 线性分类器损失函数与最优化 \(Multiclass SVM loss: L_{i} = \sum_{j \neq y_{i}} max(0,s_{i}-s_{y ...

  4. 『cs231n』视频数据处理

    视频信息 和我之前的臆想不同,视频数据不仅仅是一帧一帧的图片本身,还包含个帧之间的联系,也就是还有一个时序的信息维度,包含人的动作判断之类的任务都是要依赖动作的时序信息的 视频数据处理的两种基本方法 ...

  5. 『cs231n』绪论

    笔记链接 cs231n系列所有图片笔记均拷贝自网络,链接如上,特此声明,后篇不再重复. 计算机视觉历史 总结出视觉两个重要结论:1.基础的视觉神经识别的是简单的边缘&轮廓2.视觉是分层的 数据 ...

  6. 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上

    GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...

  7. 『cs231n』无监督学习

    经典无监督学习 聚类 K均值 PCA主成分分析 等 深度学习下的无监督学习 自编码器 传统的基于特征学习的自编码器 变种的生成式自编码器 Gen网络(对抗式生成网络) 传统自编码器 原理 类似于一个自 ...

  8. 『cs231n』RNN之理解LSTM网络

    概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...

  9. 『cs231n』循环神经网络RNN

    循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的 ...

随机推荐

  1. python之路----TCP与UDP

    TCP import socket #tcp协议 sk = socket.socket() # 买手机 创建一个socket对象 sk.bind(('127.0.0.1',8080)) # 给serv ...

  2. torch7入门(安装与使用)

    http://blog.csdn.net/real_myth/article/details/52291636 1.安装与使用 测试系统是ubuntu14.04LTS,默认安装在-/torch,当然我 ...

  3. 05: MySQLdb 原生SQL语句操作数据库

    1.1 MySQLdb安装与简介 1.MySQLdb 模块的安装(python3中目前这个模块还不可用)参考博客 1. linux: yum install MySQL-python 2. windo ...

  4. php 设置模式 单元素模式(单例模式或单件模式)

    单元素模式: 某些应用程序资源是独占的,因为有且只有一个此类型的资源.应用程序每次包含且仅包含一个对象,那么这个对象就是一个单元素.指的是在应用程序的范围内只对指定的类创建一个实例.通常该模式中包含一 ...

  5. Android项目开发四

    微博客户端开发 本周学习计划 研究微博客户端关于Sqlite数据库代码. 完成微博撰写.发布等功能模块. 将程序中存在的问题解决. 实际完成情况 Sqlite数据库学习与研究 微博客户端功能设定中涉及 ...

  6. Email移动的原理

    1.从数据库中得到被移动邮件的uid: 2.选择移动邮件所属folder,即SelectFolder; 3.调用copymessage(path,vmime::net::messageset::byU ...

  7. 「不定期更新」MacOS 编辑器使用小技巧

    Visual Studio Code Ctrl + CMD + 上下箭头:上下移动当前的代码块: Shift + Alt + 上下箭头:快速复制当前的代码块: 我最新欢的插件列表: Prettier: ...

  8. Easyui 官网网址

    http://www.jeasyui.com/download/list.php 下载版本1.5.2的easyui中文API,可在CSDN网站http://download.csdn.net/down ...

  9. P2472 [SCOI2007]蜥蜴(网络最大流)

    P2472 [SCOI2007]蜥蜴 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距 ...

  10. [BZOJ1497]最大获利

    Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一 ...