[CLPR] 卷积还是相关? - Opencv之filter2D探究
I am doing something about convolving images in Python and for sake of speed I chose opencv 2.4.9.
Opencv offers a way called filter2D to do this and here's its docs:http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=filter2d#filter2d
In docs, it says:
Convolves an image with the kernel.
But I have doubts(caused by something else) so I make some experiments on it:
First, I make a normal 3x3 matrix a using numpy as:
[[ 1., 5., 0.],
[ 7., 2., 9.],
[ 2., 3., 4.]]
Then, I make a 2x2 matrix b as the cornel as:
>>> b
[[ 1., 2.],
[ 3., 4.]]
Finally, in order to make it clear to see difference between convolve and correlate, rotate b by 180 degree and b will look like:
[[ 4., 3.],
[ 2., 1.]]
Now, All pre-work is done. We could begin the experiment.
Step 1. Use scipy.ndimage.convolve: ndconv = ndimage.convolve(a, b, mode = 'constant')and ndconv is:
[[ 35., 33., 18.],
[ 41., 45., 44.],
[ 17., 24., 16.]]
Convolution op will rotate b by 180 degree and do correlation using b on a. So ndconv[0][0] = 4*1+3*5+2*7+1*2 = 35, and ndconv[2][2] = 4*4+3*0+2*0+1*0 = 16
This result is correct.
Step 2. Use scipy.ndimage.correlate: ndcorr = ndimage.correlate(a, b, mode = 'constant')and ndcorr is:
[[ 4., 23., 15.],
[ 30., 40., 47.],
[ 22., 29., 45.]]
According to correlation's definition, ndcorr[0][0] = 1*0+2*0+3*0+4*1 = 4 because the border will expand by 0.
(Someone may be confused by the expandation's difference between conv and corr. It seems convolveexpand image in directions right and down while correlate in directions left and up.)
But this is not the point.
Step 3. Use cv2.filter2D: cvfilter = cv2.filter2D(a, -1, b) and cvfilter is:
[[ 35., 34., 35.],
[ 41., 40., 47.],
[ 33., 29., 45.]]
If we ignore the border cases, we will find that what cv2.filter2D did is actually a correlation other than aconvolution! How could I say that?
because cvfilter[1..2][1..2] == ndcorr[1..2][1..2].
WEIRD, isn't it?
Could anyone be able to tell the real thing that cv2.filter2D do? Thanks a lot.
[CLPR] 卷积还是相关? - Opencv之filter2D探究的更多相关文章
- (原)使用intel的ipp库计算卷积及相关
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5462631.html 参考网址: https://software.intel.com/zh-cn/n ...
- 图像卷积、相关以及在MATLAB中的操作
图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...
- [CLPR] 卷积神经网络的结构
本文翻译自: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi ...
- 相关与卷积(数字信号处理)的数学原理及 Python 实现
数学原理 在数字信号处理中,相关(correlation)可以分为互相关(cross correlation)和自相关(auto-correlation). 互相关是两个数字序列之间的运算:自相关是单 ...
- opencv:图像卷积
卷积基本概念 C++代码实现卷积 #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; u ...
- 13、OpenCV实现图像的空间滤波——图像平滑
1.空间滤波基础概念 1.空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波.空间滤波主要 ...
- OpenCV图像处理与视频分析详解
1.OpenCV4环境搭建 VS2017新建一个控制台项目 配置包含目录 配置库目录 配置链接器 配置环境变量 重新启动VS2017 2.第一个图像显示程序 main.cpp #include< ...
- opencv笔记4:模板运算和常见滤波操作
time:2015年10月04日 星期日 00时00分27秒 # opencv笔记4:模板运算和常见滤波操作 这一篇主要是学习模板运算,了解各种模板运算的运算过程和分类,理论方面主要参考<图像工 ...
- SSE图像算法优化系列十一:使用FFT变换实现图像卷积。
本文重点主要不在于FFT的SSE优化,而在于使用FFT实现快速卷积的相关技巧和过程. 关于FFT变换,有很多参考的代码,特别是对于长度为2的整数次幂的序列,实现起来也是非常简易的,而对于非2次幂的序列 ...
随机推荐
- C#窗体控件简介ListBox(需整理)
ListBox 控件 ListBox 控件又称列表框,它显示一个项目列表供用户选择.在列表框中,用户 一次可以选择一项,也可以选择多项. 1.常用属性: (1) Items属性: 用于存放列表框中的列 ...
- ** exception error: no match of right hand side value
错误发生的情况是模式匹配失败.对于badmatch异常,很难找到单一的原因,但经常性的原因是你无意间尝试绑定已绑定过的变量.
- oracle11g中SQL优化(SQL TUNING)新特性之Adaptive Cursor Sharing (ACS)
1. ACS简介 Oracle Database 11g提供了Adaptive Cursor Sharing (ACS)功能,以克服以往不该共享的游标被共享的可能性.ACS使用两个新指标:sens ...
- kill word fore out
1● fore f ɔ: 预先,前面
- 微信小程序通过js动态修改css样式的方法(交流QQ群:604788754)
WXML <view class="page" style="background-color:{{pageBackgroundColor}}" > ...
- linux command dialog
Linux command dialog [Purpose] Learning how to use dialog commad, do man-machine interaction ...
- 快速切题 sgu 111.Very simple problem 大数 开平方 难度:0 非java:1
111.Very simple problem time limit per test: 0.5 sec. memory limit per test: 4096 KB You are given n ...
- sgu108. Self-numbers 2 滚动数组 打表 难度:1
108. Self-numbers 2 time limit per test: 0.5 sec. memory limit per test: 4096 KB In 1949 the Indian ...
- .net下4款不错的微信SDK
.net下4款不错的微信SDK: 一款值得推荐的.Net微信开发SDK http://www.17ky.net/soft/474.html.Net微信公开帐号接口 WeiXinSDK http://w ...
- Python & PyCharm & Django 搭建web开发环境(续)
由于Django自带轻量级的server,因此在前篇博文中,默认使用该server,但实际生产中是不允许这么干的,生产环境中通常使用Apache Httpd Server结合mod_wsgi.so来做 ...