[CLPR] 卷积还是相关? - Opencv之filter2D探究
I am doing something about convolving images in Python and for sake of speed I chose opencv 2.4.9.
Opencv offers a way called filter2D to do this and here's its docs:http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=filter2d#filter2d
In docs, it says:
Convolves an image with the kernel.
But I have doubts(caused by something else) so I make some experiments on it:
First, I make a normal 3x3 matrix a using numpy as:
[[ 1., 5., 0.],
[ 7., 2., 9.],
[ 2., 3., 4.]]
Then, I make a 2x2 matrix b as the cornel as:
>>> b
[[ 1., 2.],
[ 3., 4.]]
Finally, in order to make it clear to see difference between convolve and correlate, rotate b by 180 degree and b will look like:
[[ 4., 3.],
[ 2., 1.]]
Now, All pre-work is done. We could begin the experiment.
Step 1. Use scipy.ndimage.convolve: ndconv = ndimage.convolve(a, b, mode = 'constant')and ndconv is:
[[ 35., 33., 18.],
[ 41., 45., 44.],
[ 17., 24., 16.]]
Convolution op will rotate b by 180 degree and do correlation using b on a. So ndconv[0][0] = 4*1+3*5+2*7+1*2 = 35, and ndconv[2][2] = 4*4+3*0+2*0+1*0 = 16
This result is correct.
Step 2. Use scipy.ndimage.correlate: ndcorr = ndimage.correlate(a, b, mode = 'constant')and ndcorr is:
[[ 4., 23., 15.],
[ 30., 40., 47.],
[ 22., 29., 45.]]
According to correlation's definition, ndcorr[0][0] = 1*0+2*0+3*0+4*1 = 4 because the border will expand by 0.
(Someone may be confused by the expandation's difference between conv and corr. It seems convolveexpand image in directions right and down while correlate in directions left and up.)
But this is not the point.
Step 3. Use cv2.filter2D: cvfilter = cv2.filter2D(a, -1, b) and cvfilter is:
[[ 35., 34., 35.],
[ 41., 40., 47.],
[ 33., 29., 45.]]
If we ignore the border cases, we will find that what cv2.filter2D did is actually a correlation other than aconvolution! How could I say that?
because cvfilter[1..2][1..2] == ndcorr[1..2][1..2].
WEIRD, isn't it?
Could anyone be able to tell the real thing that cv2.filter2D do? Thanks a lot.
[CLPR] 卷积还是相关? - Opencv之filter2D探究的更多相关文章
- (原)使用intel的ipp库计算卷积及相关
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5462631.html 参考网址: https://software.intel.com/zh-cn/n ...
- 图像卷积、相关以及在MATLAB中的操作
图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...
- [CLPR] 卷积神经网络的结构
本文翻译自: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi ...
- 相关与卷积(数字信号处理)的数学原理及 Python 实现
数学原理 在数字信号处理中,相关(correlation)可以分为互相关(cross correlation)和自相关(auto-correlation). 互相关是两个数字序列之间的运算:自相关是单 ...
- opencv:图像卷积
卷积基本概念 C++代码实现卷积 #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; u ...
- 13、OpenCV实现图像的空间滤波——图像平滑
1.空间滤波基础概念 1.空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波.空间滤波主要 ...
- OpenCV图像处理与视频分析详解
1.OpenCV4环境搭建 VS2017新建一个控制台项目 配置包含目录 配置库目录 配置链接器 配置环境变量 重新启动VS2017 2.第一个图像显示程序 main.cpp #include< ...
- opencv笔记4:模板运算和常见滤波操作
time:2015年10月04日 星期日 00时00分27秒 # opencv笔记4:模板运算和常见滤波操作 这一篇主要是学习模板运算,了解各种模板运算的运算过程和分类,理论方面主要参考<图像工 ...
- SSE图像算法优化系列十一:使用FFT变换实现图像卷积。
本文重点主要不在于FFT的SSE优化,而在于使用FFT实现快速卷积的相关技巧和过程. 关于FFT变换,有很多参考的代码,特别是对于长度为2的整数次幂的序列,实现起来也是非常简易的,而对于非2次幂的序列 ...
随机推荐
- 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练
一份不错的作业3资料(含答案) RNN神经元理解 单个RNN神经元行为 括号中表示的是维度 向前传播 def rnn_step_forward(x, prev_h, Wx, Wh, b): " ...
- vs2012修改代码编辑区域的背景色
- Object是个什么鬼
引言 老人常说,在js中,一切皆对象,那对象又是什么涅,最常用的我们都知道,对象有方法和属性.由一些键值对构成的集合,然后随便用个大括号括起来就形成了一个对象.看起来蛮简单的,但是真是这么简单么,当我 ...
- kill prefix meta,milli,kilo input
1● meta 超过,改变 2● milli 1/1000 3● kilo 1000
- BZOJ2590 [Usaco2012 Feb]Cow Coupons
好吧...想了半天想错了...虽然知道是贪心... 我们每次找没有被买的两种价格最小的牛,比较a = 当前差价最大的 + 当前优惠券价格最小的牛与b = 当前非优惠券价格最小的牛 所以...我们要 先 ...
- File storage location distribution in firmware using binwalk
tool function: Binwalk is a fast, easy to use tool for analyzing, reverse engineering, and extractin ...
- sgu106.The equation 拓展欧几里得 难度:0
106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ...
- [转载]request.getServletPath()方法
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果 ...
- Triangles 正多边形分割锐角三角形
题目描述 已知一个圆的圆周被N个点分成了N段等长圆弧,求任意取三个点,组成锐角三角形的个数. 输入 多组数据,每组数据一个N(N <= 1000000) 输出 对于每组数据,输出不同锐角三角形的 ...
- CCF CSP 201703
CCF CSP 2017·03 做了一段时间的CCF CSP试题,个人感觉是这样分布的 A.B题基本纯暴力可满分 B题留心数据范围 C题是个大模拟,留心即可 D题更倾向于图论?(个人做到的D题基本都是 ...