朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法, 具体见ML(3): 贝叶斯方法

R包


① e1071::e1071

② klaR::klaR

参考资料:https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/Na%C3%AFve_Bayes

算法包:e1071

函数:navieBayes(formule,data,laplace=0,...,subset,na.action=na.pass)

  • Formule: 公式的形式:class~x1 + x2 + .....  相互作用是不允许的
  • data: 数据集
  • lapace: 正面双控制拉普拉期平滑。默认值(0)禁用拉普拉斯平滑。它的思想非常简单,就是对没类别下所有划分的计数为1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的局面。【在训练样本中,某一特征的属性值可能没有出现,为了保证一个属性出现次数为0时,能够得到一个很小但是非0的概率值】

R手机短信过滤示例


数据下载地址: https://github.com/stedy/Machine-Learning-with-R-datasets/tree/72e6b6cc91bc2bb08eb6f99f52c033677cb70c1a

参考:https://zhuanlan.zhihu.com/p/22615168

原理: http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_two.html

代示示例:

  • 首先,导入数据(注:第二列文本中带“...”会导制后面的数据读不进来)

    #数据导入
    sms <- read.csv("sms.csv",header=TRUE,stringsAsFactors=FALSE)
    sms$type <- factor(sms$type)
    str(sms)
    table(sms$type)
  • 数据清洗: sms$text 文本中包含着数字、缩略的短语和标点符号等,对于NaiveBayesClassifier而言,这些信息是有干扰的,因此,在建模之前需要在语料库中对数据进行清洗。
  • 添加tm包 【参见tm包使用: http://www.cnblogs.com/tgzhu/p/6680525.html】,创建语料库,如下:语料库包含5574个document
    #创建语料库
    library(NLP)
    library(tm)
    sms_corpus <- Corpus(VectorSource(sms$text)) #clear corpus
    sms_corpus <- tm_map(sms_corpus, PlainTextDocument)
    # 所有字母转换成小写
    sms_corpus <- tm_map(sms_corpus, tolower)
    # 去除text中的数字
    sms_corpus <- tm_map(sms_corpus, removeNumbers)
    # 去除停用词,例如and,or,until...
    sms_corpus <- tm_map(sms_corpus, removeWords, stopwords())
    # 去除标点符号
    sms_corpus <- tm_map(sms_corpus, removePunctuation)
    # 去除多余的空格,使单词之间只保留一个空格
    sms_corpus <- tm_map(sms_corpus, stripWhitespace)
    #查看一下清理后的语料库文本
    inspect(sms_corpus[1])
  • 标记化:将文本分解成由单个单词组成的组,实际就是实现语料库向稀疏矩阵的转变 corpus_clean -> sms_dtm,建立训练集和测试集数据
    #将文本信息转化成DocumentTermMatrix类型的稀疏矩阵
    dtm <- DocumentTermMatrix(sms_corpus)
    Sys.setlocale(category = "LC_ALL", locale = "us") #训练集和测试集数据,查看垃圾与正常邮件占比
    trainSet <- sms[1:4169,]
    testset <- sms[4170:5574,]
  • 创建可视化词云,通过词云可以大致浏览一下哪些词在spam中经常出现,哪些词在ham中经常出现。当然,前者对于垃圾短信的过滤相对重要一点。绘制词云可以通过添加包wordcloud实现  install.packages("wordcloud")
  • 为了查看spam和ham各自的多频词,首先取trainset的子集,如下:
    > #创建可视化词云,大致浏览一下哪些词在spam中经常出现
    > library(RColorBrewer)
    > library(wordcloud)
    > #取trainset对spam和ham的子集
    > spam <- subset(trainSet, type == "spam")
    > ham <- subset(trainSet, type == "ham")
    > #创建词云
    > wordcloud(spam$text, max.words=40, scale=c(3,0.5))
  • 显示结果如下:
  • 缩减特征:在面临问题是稀疏矩阵的特征太多了,而且很多词在所有text中可能都没怎么出现过,为减少运算量对特征瘦瘦身。先留下来在所有text中出现至少5次的词
    dtm_train <- dtm[1:4169,]
    > dtm_test <- dtm[4170:5574,]
    > findFreqTerms(dtm_train,5)
    [1] "available" "bugis" "cine" "crazy" "got" "great" "point" "wat"
    [9] "world" "lar" "wif" "apply" "comp" "cup" "entry" "final"
    [17] "free" "may" "receive" "text" "txt" "win" "wkly" "already"
    [25] "dun" "early" "say" "around" "goes" "nah" "think" "though"
    [33] "usf" "back" "freemsg" "fun" "hey" "like" "now" "send"
    [41] "std" "still" "weeks" "word" "xxx" "brother" "even" "speak"
    [49] "treat" "callers" "callertune" "copy" "friends" "melle" "per" "press"
    ........................
  • 将这些词设置成指示标识,下面建模时用这个指示标识提示模型只对这些词进行计算

    > #缩减特征
    > d <- findFreqTerms(dtm,5)
    > corpus_train = sms_corpus[1:4169]
    > corpus_test = sms_corpus[4170:5574]
    > dtm_train <- DocumentTermMatrix(corpus_train,list(dictionary=d))
    > dtm_test <- DocumentTermMatrix(corpus_test,list(dictionary=d))
  • train和test都是计数矩阵,如果一条text中某个单词出现2次,那么这个单词在这条文本下会被记上2,NB只想知道这个单词出现了或者没出现,因此需要对矩阵进行转化成因子矩阵。

    > #对矩阵进行转化成因子矩阵
    > convert_counts <- function(x){
    + x <- ifelse(x>0,1,0)
    + x <- factor(x, levels=c(0,1),labels=c("No","Yes"))
    + return(x)
    + }
    > dtm_train <- apply(dtm_train, MARGIN=2, convert_counts)
    > dtm_test <- apply(dtm_test, MARGIN=2, convert_counts)
  • 训练模型

    > #需要的包是e1071
    > #install.packages("e1071")
    > library(e1071)
    > sms_classifier <- naiveBayes(dtm_train,trainSet$type)
    > sms_prediction <- predict(sms_classifier, dtm_test)
    >
  • 评估模型: 用交叉表来看看test中多少预测对了

    > library(gmodels)
    > CrossTable(sms_prediction,testset$type,prop.chisq=TRUE,prop.t=FALSE, dnn=c("predicted","actual")) Cell Contents
    |-------------------------|
    | N |
    | Chi-square contribution |
    | N / Row Total |
    | N / Col Total |
    |-------------------------| Total Observations in Table: 1405 | actual
    predicted | ham | spam | Row Total |
    -------------|-----------|-----------|-----------|
    ham | 1124 | 150 | 1274 |
    | 0.229 | 1.531 | |
    | 0.882 | 0.118 | 0.907 |
    | 0.920 | 0.820 | |
    -------------|-----------|-----------|-----------|
    spam | 98 | 33 | 131 |
    | 2.229 | 14.886 | |
    | 0.748 | 0.252 | 0.093 |
    | 0.080 | 0.180 | |
    -------------|-----------|-----------|-----------|
    Column Total | 1222 | 183 | 1405 |
    | 0.870 | 0.130 | |
    -------------|-----------|-----------|-----------|
  • ham-ham和spam-spam是预测正确的,spam-ham:本身不是垃圾短信却被认为是垃圾短信过滤掉,由于Classifier1没有设置拉普拉斯估计,下面再尝试建立classifier2,看结果是否被优化。

    > #设置拉普拉斯估计
    > sms_classifier <- naiveBayes(dtm_train,trainSet$type,laplace = 1)
    > sms_prediction <- predict(sms_classifier, dtm_test)
    > CrossTable(sms_prediction,testset$type,prop.chisq=TRUE,prop.t=FALSE, dnn=c("predicted","actual")) Cell Contents
    |-------------------------|
    | N |
    | Chi-square contribution |
    | N / Row Total |
    | N / Col Total |
    |-------------------------| Total Observations in Table: 1405 | actual
    predicted | ham | spam | Row Total |
    -------------|-----------|-----------|-----------|
    ham | 1105 | 132 | 1237 |
    | 0.788 | 5.262 | |
    | 0.893 | 0.107 | 0.880 |
    | 0.904 | 0.721 | |
    -------------|-----------|-----------|-----------|
    spam | 117 | 51 | 168 |
    | 5.803 | 38.747 | |
    | 0.696 | 0.304 | 0.120 |
    | 0.096 | 0.279 | |
    -------------|-----------|-----------|-----------|
    Column Total | 1222 | 183 | 1405 |
    | 0.870 | 0.130 | |
    -------------|-----------|-----------|-----------|
  • spam人预测结果有改进,尝试继续优化,下一步以评论分类进行中文分类模拟

 iris分类预测


  • 安装加载包

    #安装加载e1071
    #install.packages("e1071")
    library(e1071)
  • iris数据集分为训练集和测试集
    index <-sample(1:nrow(iris), 100)
    iris.train <-iris[index, ]
    iris.test <-iris[-index, ]
  • 利用朴素贝叶斯算法构建模型
    model.NaiveBayes <-naiveBayes(x =subset(iris.train,select=-Species), y= iris.train$Species)
    str(model.NaiveBayes)
    summary(model.NaiveBayes)
  • 用模型对测试集做测试

    > results.NaiveBayes <-predict(object = model.NaiveBayes, newdata =iris.test, type="class")
    > table(results.NaiveBayes, iris.test$Species) results.NaiveBayes setosa versicolor virginica
    setosa 14 0 0
    versicolor 0 17 2
    virginica 0 1 16

ML(3.1): NavieBayes R_e1071的更多相关文章

  1. ML(3.2): NavieBayes R_kalR

    ML3.1 介绍e1071包实施朴素贝叶斯分类的函数,本例使用klaR包中的NaiveBayes函数,因为该函数较之前者增加了两个功能,一个是可以输入先验概率,另一个是在正态分布基础上增加了核平滑密度 ...

  2. ML(4): NavieBayes在R中的应用

    朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法, 具体见上一节. 算法包:e1071 函数:navieBayes(formule,data,laplace=0,...,subset,na.act ...

  3. 贝叶斯、朴素贝叶斯及调用spark官网 mllib NavieBayes示例

    贝叶斯法则   机器学习的任务:在给定训练数据A时,确定假设空间B中的最佳假设.   最佳假设:一种方法是把它定义为在给定数据A以及B中不同假设的先验概率的有关知识下的最可能假设   贝叶斯理论提供了 ...

  4. Spark2 ML 学习札记

    摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训 ...

  5. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  6. [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...

  7. 机器学习 - ML

    CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computationa ...

  8. ML 基础知识

    A computer program is said to learn from experience E with respect to some task T and some performan ...

  9. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

随机推荐

  1. javascript数据结构——队列

    队列是一种先进先出的数据结.队列只能在队尾插入元素,在队首删除元素,这点和栈不一样.它用于存储顺序排列的数据.队列就像我们日常中的排队一样,排在最前面的第一个办理业务,新来的人只能在后面排队.队列这种 ...

  2. js数组与字符串之间的相互转换

    一.数组转字符串 需要将数组元素用某个字符连接成字符串,示例代码如下 <!doctype html> <html> <head> <meta charset= ...

  3. POJ 1860 Bellman-Ford算法

    转载链接:http://blog.csdn.net/lyy289065406/article/details/6645778 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币, ...

  4. Get gcc built-in macros using command gcc -dM -E - < /dev/null

    root@vmuser-virtual-machine:/home/vmuser# gcc -dM -E - < /dev/null #define __SSP_STRONG__ 3#defin ...

  5. angular封装jquery插件(组件)

    http://www.phloxblog.in/jquery-plugin-angular-js-directive-clean-html-approach/#.VaCWL9yUemJ

  6. SQL 查询重复的行

    select * from tbsold where orderid in (select orderid from tbsold group by orderid having count(orde ...

  7. DevExpress v17.2新版亮点—WPF篇(五)

    用户界面套包DevExpress v17.2终于正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了DevExpress WPF v17.2 新的Hamburger Menu.Sched ...

  8. DevExpress v17.2新版亮点—WinForms篇(三)

    用户界面套包DevExpress v17.2终于正式发布,本站将以连载的形式为大家介绍各版本新增内容.开篇介绍了DevExpress WinForms v17.2 Data Grid Control ...

  9. [追加评论]三款SDR平台对比:HackRF,bladeRF和USRP

    这三个月,有幸把3种板子都用到了.说说使用体会.   我用过其中的HackRF,bladeRF x115,USRP B210.我并没有仔细的测量各种板子的射频指标什么的,只是做各种实验的时候用到它们. ...

  10. ListBox 控件单击事件

    XAML: <ListBox x:Name="ItemBox" Grid.Column="0" Tap="ItemBox_Tap"&g ...