人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了……

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2760

Description

Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.

Input

Input consists of multiple test cases. The first line of each test case, there is an integer number N (1<=N<=100), which is the number of the vertices. Then follows an N * N matrix, represents the directed graph. Each element of the matrix is either non-negative integer, denotes the length of the edge, or -1, which means there is no edge. At the last, the test case ends with two integer numbers S and T (0<=S, T<=N-1), that is, the starting and ending points. Process to the end of the file.

Output

For each test case, output one line, the number of the the non-overlapping shortest path that we can find at most, or "inf" (without quote), if the starting point meets with the ending.

Sample Input

4
0 1 1 -1
-1 0 1 1
-1 -1 0 1
-1 -1 -1 0
0 3
5
0 1 1 -1 -1
-1 0 1 1 -1
-1 -1 0 1 -1
-1 -1 -1 0 1
-1 -1 -1 -1 0
0 4

Sample Output

2
1

呃,题意和思路什么的直接看宝典吧:

当然啦,没必要一定像他那样ds[i]+edge[i][j]+dt[j]==ds[t]这样,我们要抓住精髓,看清本质,只要保证剌进来的边属于最短路上的边就行,

所以,只要做一次spfa,然后满足d[i]+edge[i][j]==d[j]就行。

某只A题A的神志不清的博主的心灵独白                                                                   begin

然后联想到前面那题POJ1637的构图,不难发现,在integer的情况下把edge.cap设为1,可以代表一种这条边到底走不走的意义,然后全图都设为1的话,最大流大概就是……

从source到target最多有几条不相交的简单路径可走……

嗯,如果这个图上的边全是属于最短路的边的话,那么这个最大流就是本题的答案了……诶等下,再联想到dinic的BFS过程是找层次图,而层次图从某种意义上来讲就是最短路图?

所以我们可以用一个计算层次的BFS来代替SPFA?我好想发现了什么??让我来再码一发(然而spfa本来不就是个BFS么……

然后,我立马就发现……dinic里的BFS是建立在边长默认为1的情况下的,所以我立马就放弃了我TM真是个傻子……

某只A题A的神志不清的博主的心灵独白                                                                   end

呃,先忽略我的心灵独白,看跟现在市面上比较相像的代码:

 #include<cstdio>
#include<cstring>
#include<queue>
#define MAXN 103
#define INF 0x3f3f3f3f
using namespace std;
int n,s,t;
int d[MAXN],map[MAXN][MAXN];
bool vis[MAXN];
void spfa(int st)
{
for(int i=;i<n;i++){
i==st ? d[i]= : d[i]=INF;
vis[i]=;
}
queue<int> q;
q.push(st);
vis[st]=;
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=;
for(int v=;v<n;v++)
{
if(u==v || map[u][v]==-) continue;
int tmp=d[v];
if(d[v]>d[u]+map[u][v]) d[v]=d[u]+map[u][v];
if(d[v]<tmp && !vis[v]) q.push(v),vis[v]=;
}
}
} struct Edge{
int u,v,c,f;
};
struct Dinic
{
vector<Edge> E;
vector<int> G[MAXN];
bool vis[MAXN]; //BFS使用
int lev[MAXN];//记录层次
int cur[MAXN]; //当前弧下标
void init(int n)
{
E.clear();
for(int i=;i<n;i++) G[i].clear();
}
void addedge(int from,int to,int cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
int m=E.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=;i<G[now].size();i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)//属于残存网络的边
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
int dfs(int now,int aug)//now表示当前结点,aug表示目前为止的最小残量
{
if(now==t || aug==) return aug;//aug等于0时及时退出,此时相当于断路了
int flow=,f;
for(int& i=cur[now];i<G[now].size();i++)//从上次考虑的弧开始,注意要使用引用,同时修改cur[now]
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(!aug) break;//aug等于0及时退出,当aug!=0,说明当前节点还存在另一个增广路分支
}
}
return flow;
}
int maxflow()//主过程
{
int flow=;
while(bfs())//不停地用bfs构造分层网络,然后用dfs沿着阻塞流增广
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic; int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++) for(int j=;j<n;j++) scanf("%d",&map[i][j]);
scanf("%d%d",&s,&t);
if(s==t)
{
printf("inf\n");
continue;
}
spfa(s);
dinic.init(n);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
if(i!=j && map[i][j]!=- && d[i]!=INF && d[j]!=INF && d[i]+map[i][j]==d[j]) dinic.addedge(i,j,);
printf("%d\n",dinic.maxflow());
}
}

(dinic模板的中文注释懒得去掉了,反正看起来不多,到时候忘记了过程还可以看看注释回忆回忆……)

ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]的更多相关文章

  1. ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给定一个带权有向图 G=(V, E)和源点 s.汇点 t ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. ZOJ 2760 How Many Shortest Path(最短路径+最大流)

    Description Given a weighted directed graph, we define the shortest path as the path who has the sma ...

  4. zoj 2760 How Many Shortest Path【最大流】

    不重叠最短路计数. 先弗洛伊德求一遍两两距离(其实spfa或者迪杰斯特拉会更快但是没必要懒得写),然后设dis为st最短距离,把满足a[s][u]+b[u][v]+a[v][t]==dis的边(u,v ...

  5. ZOJ 2760 How Many Shortest Path (不相交的最短路径个数)

    [题意]给定一个N(N<=100)个节点的有向图,求不相交的最短路径个数(两条路径没有公共边). [思路]先用Floyd求出最短路,把最短路上的边加到网络流中,这样就保证了从s->t的一个 ...

  6. ZOJ 2760 How Many Shortest Path

    题目大意:给定一个带权有向图G=(V, E)和源点s.汇点t,问s-t边不相交最短路最多有几条.(1 <= N <= 100) 题解:从源点汇点各跑一次Dij,然后对于每一条边(u,v)如 ...

  7. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  8. CF843D Dynamic Shortest Path spfa+剪枝

    考试的T3,拿暴力+剪枝卡过去了. 没想到 CF 上也能过 ~ code: #include <bits/stdc++.h> #define N 100004 #define LL lon ...

  9. ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds      Me ...

随机推荐

  1. centos7修改root密码

    1.重启系统,在下面界面时按e键 2.出现可编辑新内容,按向下键向下滑动,找到ro,并修改为rw 后,在LANG=en_US.UTF-8后面再加init=/bin/sh,结果如下图 3.然后按下ctr ...

  2. PHP代码审计笔记--文件包含漏洞

    有限制的本地文件包含: <?php include($_GET['file'].".php"); ?> %00截断: ?file=C://Windows//win.in ...

  3. Redis 操作哈希数据

    通常我们将一些结构化的信息打包成哈希映射表,结构如下,key/value 键值对模式不变,但 value 是一个键值对 name: "Tom" age: ...... > h ...

  4. MQTT服务器搭建--Mosquitto用户名密码配置

    Mosquitto用户认证配置 前言:基于Mosquitto服务器已经搭建成功,大部分都是采用默认的是允许匿名用户登录模式,正式上线的系统需要进行用户认证. 1.用户参数说明 Mosquitto服务器 ...

  5. codeforces水题100道 第十题 Codeforces Round #277 (Div. 2) A. Calculating Function (math)

    题目链接:www.codeforces.com/problemset/problem/486/A题意:求表达式f(n)的值.(f(n)的表述见题目)C++代码: #include <iostre ...

  6. sql语句建表,并且自增加主键

    sql语句建表,并且自增加主键 use [test] CREATE TABLE [dbo].[Table_4] ( [userid] [int] IDENTITY(1,1) NOT NULL, CON ...

  7. Java面试题全集

    Java面试题全集(上) Java面试题全集(中) Java面试题全集(下) http://www.importnew.com/21445.html

  8. Web程序员应该知道的Javascript prototype原理

    有同事问了我几个和Javascript的类继承的小问题,我在也不太理解的情况下,胡诌了一通. 回来以后有些内疚, 反省一下, 整理整理Javascript的prototype的原理, 自己清楚点, 也 ...

  9. linux Tar 命令参数详解

    tar命令 . 作用 tar命令是Unix/Linux系统中备份文件的可靠方法,几乎可以工作于任何环境中,它的使用权限是所有用户. . 格式 tar [主选项+辅选项] 文件或目录 eg: tar z ...

  10. 很好用的php在线调试工具

    什么叫在线调试?就是在线上生产环境进行调试,假设有一天某个用户报某个页面某个数据怎么不对啊,看来线上出BUG了,于是你要迅速找出原因,首先看日志,可是悲剧的没有足够的日志让你确定线上BUG的原因,也许 ...