Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line.

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions: 
• 2 <= n <= 1000 
• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

题意是n个士兵站队,最终使得每个士兵的左边或者右边的人的身高都是一次下降的,求的是出队的最小人数即总人数减去最多剩余的人数;
可以先求出从左到右的递增子序列和从右到左的递增子序列;

代码如下:

#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
#define MAXN 1010
double s[MAXN];
int a[MAXN],b[MAXN];
int n;
int main()
{
while(cin>>n)
{
int i,j;
for(i=; i<=n; i++)
scanf("%lf",&s[i]);
a[]=;
for(i=; i<=n; i++) //从头开始计算最长的递增序列
{
a[i]=;
for(j=; j<i; j++)
{
if(s[i]>s[j]&&a[j]>=a[i])
a[i]=a[j]+;
}
}
b[n]=;
for(i=n-; i>=; i--) //从尾部计算最长的递增序列
{
b[i]=;
for(j=n; j>i; j--)
{
if(s[i]>s[j]&&b[j]>=b[i])
b[i]=b[j]+;
}
}
int maxn=-;//初始化max
for(i=; i<=n; i++)
{
for(j=i+; j<=n; j++)
{
if(a[i]+b[j]>maxn)
maxn=a[i]+b[j];
}
}
printf("%d\n",n-maxn);
}
return ;
}

Alignment--POJ1836的更多相关文章

  1. poj1836 Alignment

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11707   Accepted: 3730 Descri ...

  2. POJ1836 - Alignment(LIS)

    题目大意 一队士兵排成一条直线,问最少出队几个士兵,使得队里的每个士兵都可以看到又端点或者左端点 题解 从左往右搞一遍LIS,然后从右往左搞一遍LIS,然后枚举即可... 代码: #include&l ...

  3. POJ1836 Alignment(LIS)

    题目链接. 分析: 从左向右求一遍LIS,再从右向左求一遍LIS,最后一综合,就OK了. 注意: 有一种特殊情况(详见discuss): 8 3 4 5 1 2 5 4 3 答案是:2 AC代码如下: ...

  4. POJ1836:Alignment(LIS的应用)

    题目链接:http://poj.org/problem?id=1836 题目要求: 给你n个数,判断最少去掉多少个数,从中间往左是递减的序列,往右是递增的序列 需注意的是中间可能为两个相同的值,如 1 ...

  5. Alignment trap 解决方法  【转 结合上一篇

    前几天交叉编译crtmpserver到arm9下.编译通过,但是运行的时候,总是提示Alignment trap,但是并不影响程序的运行.这依然很令人不爽,因为不知道是什么原因引起的,这就像一颗定时炸 ...

  6. ARMLinux下Alignment trap的一些测试 【转自 李迟的专栏 CSDN http://blog.csdn.net/subfate/article/details/7847356

    项目中有时会遇到字节对齐的问题,英文为“Alignment trap”,如果直译,意思为“对齐陷阱”,不过这个说法不太好理解,还是直接用英文来表达. ARM平台下一般是4字节对齐,可以参考文后的给出的 ...

  7. Multiple sequence alignment Benchmark Data set

    Multiple sequence alignment Benchmark Data set 1. 汇总: 序列比对标准数据集: http://www.drive5.com/bench/ This i ...

  8. POJ 1836 Alignment

    Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 11450 Accepted: 3647 Descriptio ...

  9. cf.295.C.DNA Alignment(数学推导)

    DNA Alignment time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  10. Alignment

    Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14547 Accepted: 4718 Descriptio ...

随机推荐

  1. 【安全开发】java安全编码规范

    申明:本文非笔者原创,原文转载自:https://github.com/SecurityPaper/SecurityPaper-web/blob/master/_posts/2.SDL%E8%A7%8 ...

  2. [C] 如何使用头文件 .h 编译 C 源码

    在 C 语言中,头文件或包含文件通常是一个源代码文件,程序员使用编译器指令将头文件包含进其他源文件的开始(或头部),由编译器在处理另一个源文件时自动包含进来. 一个头文件一般包含类.子程序.变量和其他 ...

  3. 浅谈千万级PV/IP规模高性能高并发网站架构(转自老男孩)

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://oldboy.blog.51cto.com/2561410/736710 如果把来 ...

  4. python+机器学习 算法用到的知识点总结

    1.浅述python中argsort()函数的用法 (1).先定义一个array数据 1 import numpy as np 2 x=np.array([1,4,3,-1,6,9]) (2).现在我 ...

  5. Esper学习之九:EPL语法(五)

    本篇的内容主要包括了Subquery(也就是子查询)和Join,内容不少,但是不难,基本上和sql差不太多. 1.Subquery EPL里的Subquery和sql的类似,是否比sql的用法更多我不 ...

  6. MFC 虚函数与消息映射区别

    初学MFC添加函数时,总是纠结于是 Add  windows message handler or Add virtual function 说到底不理解MFC中虚函数与消息处理函数的设计区别 本人理 ...

  7. Android 1.6 PackageManagerService源码分析

    文件清单 framework\base\services\core\java\com\android\server\pm\PackageManagerService.java PackageManag ...

  8. Android studio 插件安装

    安装插件步骤 一 CodeGlance 最大的用途:可用于快速定位代码.显示在右侧 二 Android Studio Prettify 可以将代码中的字符串写在string.xml文件中 选中字符串鼠 ...

  9. LeetCode 24 Swap Nodes in Pairs (交换相邻节点)

    题目链接: https://leetcode.com/problems/swap-nodes-in-pairs/?tab=Description   Problem: 交换相邻的两个节点     如上 ...

  10. nginx expires配置

    配置expiresexpires起到控制页面缓存的作用,合理的配置expires可以减少很多服务器的请求要配置expires,可以在http段中或者server段中或者location段中加入   1 ...