http://codeforces.com/problemset/problem/451/C

A - Predict Outcome of the Game

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

There are n games in a football tournament. Three teams are participating in it. Currently k games had already been played.

You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these kgames. Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and that of between second and third team will be d2.

You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there exist a valid tournament satisfying the friend's guess such that no team will win this tournament?

Note that outcome of a match can not be a draw, it has to be either win or loss.

Input

The first line of the input contains a single integer corresponding to number of test cases t(1 ≤ t ≤ 105).

Each of the next t lines will contain four space-separated integers n, k, d1, d2(1 ≤ n ≤ 1012; 0 ≤ k ≤ n; 0 ≤ d1, d2 ≤ k) — data for the current test case.

Output

For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no" otherwise (without quotes).

Sample Input

Input
5
3 0 0 0
3 3 0 0
6 4 1 0
6 3 3 0
3 3 3 2
Output
yes
yes
yes
no
no

Hint

Sample 1. There has not been any match up to now (k = 0, d1 = 0, d2 = 0). If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.

Sample 2. You missed all the games (k = 3). As d1 = 0 and d2 = 0, and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".

Sample 3. You missed 4 matches, and d1 = 1, d2 = 0. These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal number of wins (2 wins).

题目大意:题意有点坑,就是三支球队有n场比赛,错过了k场,即这k场比赛不知道输赢,只知道第一支球队和第二支球队胜局情况差d1,第二和第三差d2,问说最后有没有可能三支队伍胜局数相同。

思路:就是分类讨论。只需要讨论四种情况:如d1=3,d2=2,则三队的情况可能是(5,2,0),(3,0,2),(0,3,5),(0,3,1)。比如(5,2,0),这里表明至少已进行了7场,比较7是否比k小,且是否(k-7)是3的倍数,因为(6,3,1)等价于(5,2,0);然后需要考虑至少还需要进行的场数,至少再进行8场才能三队持平,比较8是否比(n-k)大,且(n-k-8)是否是3的倍数。

代码:

 #include <fstream>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib> using namespace std; #define PI acos(-1.0)
#define EPS 1e-10
#define lll __int64
#define ll long long
#define INF 0x7fffffff lll n,k,d1,d2,d11,d22; inline bool Check(lll x,lll y); int main(){
//freopen("D:\\input.in","r",stdin);
//freopen("D:\\output.out","w",stdout);
int T;
scanf("%d",&T);
while(T--){
scanf("%I64d %I64d %I64d %I64d",&n,&k,&d1,&d2);
if(n%==){
lll j1,j2,j3,j4;
j1=d1+(d2<<);
j2=(d1<<)+d2;
j3=d1+d2;
j4=(max(d1,d2)<<)-min(d1,d2);
if((Check(j1,k)&&Check(j2,n-k))||(Check(j1,n-k)&&Check(j2,k))||(Check(j3,k)&&Check(j4,n-k))||(Check(j3,n-k)&&Check(j4,k))) puts("yes");
else puts("no");
}else puts("no");
}
return ;
}
inline bool Check(lll x,lll y){
return x<=y&&(y-x)%==;
}

cf451C-Predict Outcome of the Game的更多相关文章

  1. CF451C Predict Outcome of the Game 水题

    Codeforces Round #258 (Div. 2) Predict Outcome of the Game C. Predict Outcome of the Game time limit ...

  2. CodeForces 451C Predict Outcome of the Game

    Predict Outcome of the Game Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d &a ...

  3. Codeforces Round #258 (Div. 2) C. Predict Outcome of the Game 水题

    C. Predict Outcome of the Game 题目连接: http://codeforces.com/contest/451/problem/C Description There a ...

  4. codeforces 258div2C Predict Outcome of the Game

    题目链接:http://codeforces.com/contest/451/problem/C 解题报告:三个球队之间一共有n场比赛,现在已经进行了k场,不知道每个球队的胜场是多少,如三个球队的胜场 ...

  5. codeforces 451C. Predict Outcome of the Game 解题报告

    题目链接:http://codeforces.com/problemset/problem/451/C 题目意思:有3支球队(假设编号为1.2.3),总共要打 n 场比赛,已知已经错过这n场比赛中的 ...

  6. Codeforces Round #258 (Div. 2/C)/Codeforces451C_Predict Outcome of the Game(枚举)

    解题报告 http://blog.csdn.net/juncoder/article/details/38102391 题意: n场比赛当中k场是没看过的,对于这k场比赛,a,b,c三队赢的场次的关系 ...

  7. Codeforces Round #258 (Div. 2)

    A - Game With Sticks 题目的意思: n个水平条,m个竖直条,组成网格,每次删除交点所在的行和列,两个人轮流删除,直到最后没有交点为止,最后不能再删除的人将输掉 解题思路: 每次删除 ...

  8. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  9. Codeforces Round #258 (Div. 2)(A,B,C,D)

    题目链接 A. Game With Sticks time limit per test:1 secondmemory limit per test:256 megabytesinput:standa ...

随机推荐

  1. 杂项:MSMQ

    ylbtech-杂项:MSMQ MicroSoft Message Queuing(微软消息队列)是在多个不同的应用之间实现相互通信的一种异步传输模式,相互通信的应用可以分布于同一台机器上,也可以分布 ...

  2. MariaDB管理系统

    MariaDB管理系统 [root@c4kaichen@163 ~]# yum install mariadb[root@c4kaichen@163 ~]# yum install -y mariad ...

  3. 针对ROS5版本的配置导出和导入(迁移其他服务器)

    1.在老ROS,导出当前系统配置export compact RouterOS 5.12 新增功能 export compact 命令,该命令简化了导出的参数,仅导出修改的配置,系统默 认配置参数将不 ...

  4. Xss漏洞原理分析及简单的讲解

    感觉百度百科 针对XSS的讲解,挺不错的,转载一下~   XSS攻击全称跨站脚本攻击,是为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XS ...

  5. direct path read/write (直接路径读/写)

    转载:http://www.dbtan.com/2010/04/direct-path-readwrite.html direct path read/write (直接路径读/写): 直接路径读(d ...

  6. solr亿万级索引优化实践(四)

    本篇是这个系类的最后一篇,但优化方案不仅于此,需要后续的研究与学习,本篇主要从schema设计的角度来做一些实践. schema.xml 这个文件的作用是定义索引数据中的域的,包括域名称,域类型,域是 ...

  7. bootStrap 教程 文档

    参考1: https://www.w3schools.com/bootstrap/default.asp 参考1:http://www.runoob.com/bootstrap/bootstrap-i ...

  8. 在Apache下开启SSI配置

    开启SSI:html.shtml页面include网页文件 使用SSI(Server Side Include)的html文件扩展名,SSI(Server Side Include),通常称为&quo ...

  9. Java Future 和 FutureTask 源码Demo

    Future 是一个接口,看源码有Future 和 FutreTask 使用Demo package java.util.concurrent; /** * A <tt>Future< ...

  10. S+ hidden tray with window start

    官方论坛上有个帖子给出了答案: I forgot that this is supported in the code, but it requires a little editing of the ...