【POJ 3071】 Football(DP)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4350 | Accepted: 2222 |
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then,
the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After
n rounds, only one team remains undefeated; this team is declared the winner.
Given a matrix P = [pij] such that pij is the probability that team
i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing
n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the
jth value on the ith line represents pij. The matrix
P will satisfy the constraints that pij = 1.0 −
pji for all i ≠ j, and pii = 0.0 for all
i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the
double data type instead of float.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least
0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
Hint
In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
| P(2 wins) | = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4) = p21p34p23 + p21p43p24 = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396. |
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.
算是个概率dp,。。比較简单的
题目大意:要举办n场足球比赛。一共同拥有2^n支队伍。
比赛规则就是晋级型,第一个跟第二个比,第三个跟第四个。每场中赢的一支队伍进入下一场比赛。
最后仅仅有一个冠军。
大体就是树型的那种。
问有最大概率获得冠军的队伍编号,题目还保证不会有精度问题了。
这样n <= 7 最多1<<7 = 128个队伍。
dp[i][j] 表示编号为i的队伍在第j场比赛中胜出的概率
因为是树型,事实上当前场次每组胜出的队伍就是这个子树的根,他会与同父亲的还有一棵子树,或者说和他兄弟中的队伍比赛。
这样每次暴力枚举赢家,然后求出在该场胜出的概率就可以
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define Pr pair<int,int>
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const int mod = 1e9+7;
const double eps = 1e-8; double win[133][133];
double dp[133][8]; int main()
{
//fread();
//fwrite(); int n,m;
while(~scanf("%d",&n) && ~n)
{
m = n;
memset(dp,0,sizeof(dp)); n = 1<<n;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
scanf("%lf",&win[i][j]); int ad,st,en;
for(int i = 0; i < m; ++i)
{
//当前场次覆盖的区间范围大小
ad = 1<<i; //printf("level:%d can:%d mx:%d ad:%d\n",i,tmp,k,ad); //st-ad表示当前球队所在范围
int st = 1, en = ad;
for(int j = 1; j <= n; ++j)
{
if(!i)
{
//printf("%dto%d\n",j,j+(j&1? 1: -1));
dp[j][i] = win[j][j+(j&1? 1: -1)];
}
else
{
if(j > en)
{
st += ad;
en += ad;
} //printf("%d-%d\n",st,en); //左子树
if(en&ad)
{
//printf("findin:%d-%d\n",st+ad,en+ad);
for(int z = st+ad; z <= en+ad; ++z)
dp[j][i] += win[j][z]*dp[z][i-1];
}
//右子树
else
{
//printf("findin:%d-%d\n",st-ad,en-ad);
for(int z = st-ad; z <= en-ad; ++z)
dp[j][i] += win[j][z]*dp[z][i-1];
}
dp[j][i] *= dp[j][i-1];
}
}
} int id = 1;
for(int i = 2; i <= n; ++i)
{
//printf("%d %f\n",i,dp[i][m-1]);
if(dp[id][m-1] < dp[i][m-1]) id = i;
}
printf("%d\n",id);
} return 0;
}
【POJ 3071】 Football(DP)的更多相关文章
- 【noi 2.6_9270】&【poj 2440】DNA(DP)
题意:问长度为L的所有01串中,有多少个不包含"101"和"111"的串. 解法:f[i][j]表示长度为i的01串中,结尾2位的十进制数是j的合法串的个数.那 ...
- 【POJ 3071】 Football
[题目链接] http://poj.org/problem?id=3071 [算法] 概率DP f[i][j]表示第j支队伍进入第i轮的概率,转移比较显然 [代码] #include <algo ...
- 【noi 2.6_9275】&【bzoj 3398】Bullcow(DP){Usaco2009 Feb}
题意:一共有N只牡牛(公牛)和牝牛(母牛),每2只牡牛间至少要有K只牝牛才不会斗殴.问无斗殴发生的方案数. 解法:f[i][j]表示一共i只牛,最后一只是j(0为牝牛,1为牡牛)的方案数.f[i][0 ...
- 【HDU - 4345 】Permutation(DP)
BUPT2017 wintertraining(15) #8F 题意 1到n的排列,经过几次置换(也是一个排列)回到原来的排列,就是循环了. 现在给n(<=1000),求循环周期的所有可能数. ...
- 【POJ - 3040】Allowance(贪心)
Allowance 原文是English,这里就放Chinese了 Descriptions: 作为创纪录的牛奶生产的奖励,农场主约翰决定开始给Bessie奶牛一个小的每周津贴.FJ有一套硬币N种(1 ...
- 【POJ - 3414】Pots(bfs)
Pots 直接上中文 Descriptions: 给你两个容器,分别能装下A升水和B升水,并且可以进行以下操作 FILL(i) 将第i个容器从水龙头里装满(1 ≤ i ≤ 2); DRO ...
- 【POJ - 3104 】Drying(二分)
Drying 直接上中文 Descriptions 每件衣服都有一定单位水分,在不使用烘干器的情况下,每件衣服每分钟自然流失1个单位水分,但如果使用了烘干机则每分钟流失K个单位水分,但是遗憾是只有1台 ...
- 【POJ - 1862】Stripies (贪心)
Stripies 直接上中文了 Descriptions 我们的化学生物学家发明了一种新的叫stripies非常神奇的生命.该stripies是透明的无定形变形虫似的生物,生活在果冻状的营养培养基平板 ...
- 【POJ - 2431】Expedition(优先队列)
Expedition 直接中文 Descriptions 一群奶牛抓起一辆卡车,冒险进入丛林深处的探险队.作为相当差的司机,不幸的是,奶牛设法跑过一块岩石并刺破卡车的油箱.卡车现在每运行一个单位的距离 ...
随机推荐
- 深入System.Web.Caching命名空间 教你Hold住缓存管理
一,System .Web.Caching与缓存工作机制简介 System.Web.Caching是用来管理缓存的命名空间,其父级空间是System.Web,由此可见,缓存通常用于Web网站的开发,包 ...
- 使用Axure RP原型设计实践02,自定义部件以及熟悉与部件相关面板
本篇体验在Axure中自定义部件,并熟悉Widget Interations and Notes面板,Widget Properties and Style面板,Widget Manager面板. 在 ...
- Java Date 日期 时间 相关方法
DateTools.java import java.text.SimpleDateFormat; import java.util.Date; /** * 日期操作类 */ public class ...
- cocos2d-x 输出debug信息
cocos2d-x 输出debug信息 在Classes目录下添加文件AppDef.h #ifndef _APP_DEF_H_#define _APP_DEF_H_ #include <an ...
- Selenium:Hello,World!
背景 伟鹏同学在学习自动化测试了,开发人员也有必要学习一下,有如下好处: 可以开发一些小工具. 可以熟悉一下自动化测试开发技术. 代码 using System; using Microsoft.Vi ...
- POJ1580 水题,积累!
[题意简述]:题意非常easy.就是将这两个字符串比較,移动着比較.求出最多的同样的元素个数.然后用题目中所给的公式,写出结果. [分析]:本题要注意的就是for循环的形式.注意积累就可以. 详见代码 ...
- Java类加载机制的理解
算上大学,尽管接触Java已经有4年时间并对基本的API算得上熟练应用,但是依旧觉得自己对于Java的特性依然是一知半解.要成为优秀的Java开发人员,需要深入了解Java平台的工作方式,其中类加载机 ...
- 用纯JAVA代码来创建视图
package com.kale.codeview; import android.os.Bundle; import android.support.v7.app.ActionBarActivity ...
- C#与Java 的区别
相同点:都是面向对象编程的语言,都能够实现面向对象的(封装,继承,多态)思想 不同点:1. c#中的命名空间是namespace类似于Java中的package(包),在Java中导入包用impo ...
- Java的四个基本特性和对多态的理解
Java面向对象的四大基本特性:抽象.封装.继承.多态. 多态的实现方式:重载.继承.接口 Java中多态性的实现 什么是多态 面向对象的三大特性:封装.继承.多态.从一定角度来看,封装和继承几乎都是 ...