在计算机科学中,树是一种十分重要的数据结构。树被描述为一种分层数据抽象模型,常用来描述数据间的层级关系和组织结构。树也是一种非顺序的数据结构。下图展示了树的定义:

  在介绍如何用JavaScript实现树之前,我们先介绍一些和树相关的术语。

  如上图所示,一棵完整的树包含一个位于树顶部的节点,称之为根节点(11),它没有父节点。树中的每一个元素都叫做一个节点,节点分为内部节点(图中显示为黄色的节点)和外部节点(图中显示为灰色的节点),至少有一个子节点的节点称为内部节点,没有子元素的节点称为外部节点或叶子节点。一个节点可以有祖先(根节点除外)和后代。子树由节点本身和它的后代组成,如上图中三角虚框中的部分就是一棵子树。节点拥有的子树的个数称之为节点的度,如上图中除叶子节点的度为0外,其余节点的度都为2。从根节点开始,根为第1层,第一级子节点为第2层,第二级子节点为第3层,以此类推。树的高度(深度)由树中节点的最大层级决定(上图中树的高度为4)。

  在一棵树中,具有相同父节点的一组节点称为兄弟节点,如上图中的3和6、5和9等都是兄弟节点。

二叉树

  二叉树中的节点最多只能有两个子节点,一个是左子节点,一个是右子节点。左右子节点的顺序不能颠倒。因此,二叉树中不存在度大于2的节点。

  二叉搜索树(BST——Binary Search Tree)是二叉树的一种,它规定在左子节点上存储小(比父节点)的值,在右子节点上(比父节点)存储大(或等于)的值。上图就是一个二叉搜索树。

  下面我们重点来看一下二叉搜索树的实现。

  根据二叉树的描述,一个节点最多只有两个子节点,我们可以使用《JavaScript数据结构——链表的实现与应用》一文中的双向链表来实现二叉搜索树中的每一个节点。下面是二叉搜索树的数据结构示意图:

  以下是我们要实现的BinarySearchTree类的骨架部分:

class BinarySearchTree {
constructor () {
this.root = null;
} // 向树中插入一个节点
insert (key) {} // 在树中查找一个节点
search (key) {} // 通过中序遍历方式遍历树中的所有节点
inOrderTraverse () {} // 通过先序遍历方式遍历树中的所有节点
preOrderTraverse () {} // 通过后序遍历方式遍历树中的所有节点
postOrderTraverse () {} // 返回树中的最小节点
min () {} // 返回树中的最大节点
max () {} // 从树中移除一个节点
remove (key) {}
}

  先来看看向树中添加一个节点。我们借用《JavaScript数据结构——链表的实现与应用》一文中的双向链表DoubleLinkedList类来模拟树中的节点,在DoubleLinkedList类中,每一个节点有三个属性:element、next和prev。我们在这里用element表示树中节点的key,用next表示树中节点的右子节点(right),用prev表示树中节点的左子节点(left)。

insert (key) {
let newNode = new Node(key); if (this.root === null) this.root = newNode;
else insertNode(this.root, newNode);
}

  当树的root为null时,表示树为空,这时直接将新添加的节点作为树的根节点。否则,我们需要借助于私有函数insertNode()来完成节点的添加。在insertNode()函数中,我们需要根据新添加节点的key的大小来递归查找树的左侧子节点或者右侧子节点,因为根据我们的二叉搜索树的定义,值小的节点永远保存在左侧子节点上,值大的节点(包括值相等的情况)永远保存在右侧子节点上。下面是insertNode()函数的实现代码:

let insertNode = function (node, newNode) {
if (newNode.element < node.element) {
if (node.prev === null) node.prev = newNode;
else insertNode(node.prev, newNode);
}
else {
if (node.next === null) node.next = newNode;
else insertNode(node.next, newNode);
}
};

  所有新节点只能作为叶子节点被添加到树中。在本文一开始给出的树的结构图中,如果要添加节点2,对应的操作步骤如下:

  我们传入树的根节点,依次进行递归,找到对应的叶子节点,然后修改节点的prev(左子节点)或next(右子节点)指针,使其指向新添加的节点。在上例中,如果要添加节点4,它对应的位置应该是节点3的右子节点,因为4比3大。如果要添加节点21,对应的位置应该是节点25的左子节点......

  下面我们来看看树的三种遍历方式:

  • 前序遍历(NLR——Preorder Traversal)也叫先序遍历,访问根节点的操作发生在遍历其左右子树之前。
  • 中序遍历(LNR——Inorder Traversal),访问根节点的操作发生在遍历其左右子树之间。
  • 后序遍历(LRN——Postorder Traversal),访问根节点的操作发生在遍历其左右子树之后。

  下面的三个方法对应树的三种遍历方式:

// 前序遍历
let preOrderTraverseNode = function (node, callback) {
if (node !== null) {
callback(node.element);
preOrderTraverseNode(node.prev, callback);
preOrderTraverseNode(node.next, callback);
}
}; // 中序遍历
let inOrderTraverseNode = function (node, callback) {
if (node !== null) {
inOrderTraverseNode(node.prev, callback);
callback(node.element);
inOrderTraverseNode(node.next, callback);
}
}; // 后续遍历
let postOrderTraverseNode = function (node, callback) {
if (node !== null) {
postOrderTraverseNode(node.prev, callback);
postOrderTraverseNode(node.next, callback);
callback(node.element);
}
};

  可以看到,这三个函数的内容很相似,只是调整了左右子树和根节点的遍历顺序。这里的callback是一个回调函数,可以传入任何你想执行的函数,这里我们传入的函数内容是打印树的节点的key值。我们将BinarySearchTree类的这三个遍历方法的内容补充完整:

preOrderTraverse (callback) {
preOrderTraverseNode(this.root, callback);
} inOrderTraverse (callback) {
inOrderTraverseNode(this.root, callback);
} postOrderTraverse (callback) {
postOrderTraverseNode(this.root, callback);
}

  为了构建本文一开始的那棵树,我们执行下面的代码,然后测试preOrderTraverse()方法:

let tree = new BinarySearchTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(5);
tree.insert(9);
tree.insert(13);
tree.insert(20);
tree.insert(3);
tree.insert(6);
tree.insert(8);
tree.insert(10);
tree.insert(12);
tree.insert(14);
tree.insert(18);
tree.insert(25); tree.preOrderTraverse((value) => console.log(value));

  注意节点插入的顺序,顺序不同,你可能会得到不一样的树。preOrderTraverse()方法采用ES6的语法传入了一个匿名函数作为参数callback的值,这个匿名函数的主要作用就是打印树中节点的key值,可以对照上面三个遍历树节点的函数中的callback(node.element)语句,这里的callback就是这个匿名函数,node.element就是节点的key值(还记得前面我们说过,借用双向链表类DoubleLinkedList来模拟树的节点吗?)下面是前序遍历的执行结果:


  我们参照前序遍历的定义,借住下面的示意图来理解整个遍历过程:

  在前序遍历函数preOrderTraverseNode()中,先执行callback(node.element),然后再依次递归左子树和右子树。我们将树的根节点作为第一个节点传入,首先打印的就是根节点11,然后开始遍历左子树,这将依次打印左子树中的所有左子节点,依次是7、5、3。当节点3的prev为null时,递归返回,继续查找节点3的右子节点,此时节点3的next值也为null,于是继续向上返回到节点5,开始遍历节点5的右子节点,于是打印节点6......最终所有的节点就按照这个递归顺序进行遍历。

  然后我们再来看看中序遍历的情况。

tree.inOrderTraverse((value) => console.log(value));

  在中序遍历函数inOrderTraverseNode()中,先递归左子树,然后执行callback(node.element),最后再递归右子树。同样的,我们将根节点作为第一个节点传入,递归到左子树的最后一个左子节点3,由于节点3的prev为null,所以递归返回,打印节点3,然后继续查找节点3的右子节点,节点3的next值也为null,递归返回到上一层节点5,开始打印节点5,之后再查找节点5的右子节点......最终整棵树按照这个顺序完成遍历。

  最后再来看看后序遍历的情况。

tree.postOrderTraverse((value) => console.log(value));

  在后序遍历函数postOrderTraverseNode()中,先递归左子树,然后再递归右子树,最后执行callback(node.element)。同样的,我们将根节点作为第一个节点传入,递归到左子树的最后一个左子节点3,由于节点3的prev为null,所以递归返回,此时继续查找节点3的右子节点,节点3的next值也为null,递归返回并打印节点3,之后递归返回到上一层节点5,开始查找节点5的右子节点,节点5的右子节点是节点6,由于节点6是叶子节点,所以直接打印节点6,然后递归返回并打印节点5。之后递归再向上返回到节点7并递归节点7的右子节点......按照这个顺序最终完成对整棵树的遍历。

  接下来我们再来看看对树的搜索。有三种要经常执行的搜索方式:

  • 搜索树中的最小值
  • 搜索树中的最大值
  • 搜索树中的特定值

  搜索树中的最小值和最大值比较简单,由于我们的二叉搜索树规定了值小的节点永远在左子树(左子节点)中,值大(或相等)的节点永远在右子树(右子节点)中,所以,搜索最大值我们只需要递归查找树的右子树直到叶子节点,就能找到值最大的节点。搜索最小值只需要递归查找树的左子树直到叶子节点,就能找到值最小的节点。下面是这两个函数的实现:

let minNode = function (node) {
if (node === null) return null; while (node && node.prev !== null) {
node = node.prev;
}
return node;
}; let maxNode = function (node) {
if (node === null) return null; while (node && node.next !== null) {
node = node.next;
}
return node;
};

  第三种方式是搜索特定的值,我们需要比较要搜索的值与当前节点的值,如果要搜索的值小于当前节点的值,则从当前节点开始递归查找左子数(左子节点)。如果要搜索的值大于当前节点的值,则从当前节点开始递归查找右子树(右子节点)。按照这个逻辑,我们的searchNode()函数实现如下:

let searchNode = function (node, key) {
if (node === null) return null; if (key < node.element) return searchNode(node.prev, key);
else if (key > node.element) return searchNode(node.next, key);
else return node;
};

  如果找到了对应的节点,就返回该节点,否则就返回null。我们将BinarySearchTree类的这三个搜索方法的内容补充完整:

search (key) {
return searchNode(this.root, key);
} min () {
return minNode(this.root);
} max () {
return maxNode(this.root);
}

  下面是一些测试用例及结果:

console.log(tree.min().element); //
console.log(tree.max().element); //
console.log(tree.search(1) ? 'Key 1 found.' : 'Key 1 not found.'); // Key 1 not found.
console.log(tree.search(8) ? 'Key 8 found.' : 'Key 8 not found.'); // Key 8 found.

  让我们来看一下search()方法的执行过程是怎样的。

  搜索key=1的节点,首先我们传入树的根节点和key=1,由于1小于根节点的值11,递归查找根节点的左子节点7,1<7,继续查找节点7的左子节点,直到找到叶子节点3,1仍然小于3,但是节点3没有左子节点了,所以返回false,整个递归开始向上返回,最终返回的结果是false,表示树中没有key=1的节点。

  相应地,对于搜索key=8的节点,也是先遍历根节点的左子节点7,由于8>7,所以会遍历节点7的右子节点,找到节点9,8<9,遍历节点9的左子节点,此时找到节点9的左子节点正好是8,所以返回true,然后整个递归向上返回,最终的返回结果就是true,表示树中找到了key=8的节点。

  最后我们再来看一下从树中移除一个节点的过程,这个过程要稍微复杂一些。先来看看删除树节点的函数removeNode()的代码,稍后我们再来详细讲解整个执行过程。

let removeNode = function (node, key) {
if (node === null) return null; if (key < node.element) {
node.prev = removeNode(node.prev, key);
return node;
}
else if (key > node.element) {
node.next = removeNode(node.next, key);
return node;
}
else {
// 第一种情况:一个叶子节点(没有子节点)
if (node.prev === null && node.next === null) {
node = null;
return node;
}
// 第二种情况:只包含一个子节点
if (node.prev === null) {
node = node.next;
return node;
}
else if (node.next === null) {
node = node.prev;
return node;
} // 第三种情况:有两个子节点
let aux = minNode(node.next);
node.element = aux.element;
node.next = removeNode(node.next, aux.element);
return node;
}
};

  首先要找到树中待删除的节点,这需要进行递归遍历,从根节点开始,如果key值小于当前节点的值,则遍历左子树,如果key值大于当前节点的值,则遍历右子树。注意,在递归遍历的过程中,我们将node(这里的node传入的是树的根节点)的prev指针或next指针逐级指向下一级节点,然后返回整个node。当找到要删除的节点后,我们要处理三种情况:

  • 该节点为叶子节点(没有子节点)
  • 该节点只有一个子节点(左子节点或右子节点)
  • 该节点有两个子节点(左右子节点都存在)

  我们先看第一种情况:

  假设我们要删除节点6,传入根节点11,整个执行过程如下:

  1. node=11,key=6,6<11,递归执行removeNode(7, 6)
  2. node=7,key=6,6<7,递归执行removeNode(5, 6)
  3. node=5,key=6,6>5,递归执行removeNode(6, 6)
  4. node=6,key=6,6=6,并且节点6的prev和next都为null,所以我们将节点6设置为null,并且返回null
  5. 递归返回到步骤3,节点5的next将获取步骤4的返回值null
  6. 递归返回到步骤2,节点7的prev依然指向节点5,保持不变
  7. 递归返回到步骤1,节点11的prev依然指向节点7,保持不变
  8. 最后返回节点11

  然后我们来看只有一个子节点的情况:

  前面已经删除了节点6,假设我们现在要删除节点5,它有一个左子节点3,我们依然传入根节点11,来看看整个执行过程:

  1. node=11,key=5,5<11,递归执行removeNode(7, 5)
  2. node=7,key=5,5<7,递归执行removeNode(5, 5)
  3. node=5,key=5,5=5,并且节点5的prev=3,next=null,所以我们将节点5替换成它的左子节点3,并返回节点3
  4. 递归返回到步骤2,节点7的next将获取步骤3的返回值3
  5. 递归返回到步骤1,节点11的prev依然指向节点7,保持不变
  6. 最后返回节点11

  我们不需要将节点5从内存中删除,它会自动被JavaScript的垃圾回收器清理掉,这个在《JavaScript数据结构——链表的实现与应用》一文中已经介绍过。以上步骤是针对目标节点有左子节点的情况,对于有右子节点情况,执行过程是类似的。

  最后再来看第三种情况:

  前面已经删除了节点6和节点5,现在我们要删除节点15,它有左右子树,我们传入根节点11,来看下具体执行过程:

  1. node=11,key=15,15>11,递归执行removeNode(15, 15)
  2. node=15,key=15,15=15,此时我们需要找到节点15的右子树中的最小节点18,将节点15的key替换成节点18的key,然后将节点15的next节点(即节点20)作为起始节点进行遍历,找到并删除节点18,最后再将节点15(此时它的key是18)的next指针指向节点20,并返回节点15
  3. 递归返回到步骤1,节点11的next依然指向节点15,但此时节点15的key已经变成18了
  4. 最后返回节点11

  试想一下,当删除节点15之后,为了保证我们的二叉搜索树结构稳定,必须用节点15的右子树中的最小节点来替换节点15,如果直接将11的next指向20,则20将会有三个子节点13、18、25,这显然已经不符合我们二叉树的定义了。如果将节点25用来替换节点15,节点20的值比节点25的值小,不应该出现在右子节点,这也不符合我们的二叉搜索树的定义。所以,只有按照上述过程才能既保证不破坏树的结构,又能删除节点。

  我们已经完成了一开始我们定义的二叉搜索树BinarySearchTree类的所有方法,下面是它的完整代码:

 let insertNode = function (node, newNode) {
if (newNode.element < node.element) {
if (node.prev === null) node.prev = newNode;
else insertNode(node.prev, newNode);
}
else {
if (node.next === null) node.next = newNode;
else insertNode(node.next, newNode);
}
}; let preOrderTraverseNode = function (node, callback) {
if (node !== null) {
callback(node.element);
preOrderTraverseNode(node.prev, callback);
preOrderTraverseNode(node.next, callback);
}
}; let inOrderTraverseNode = function (node, callback) {
if (node !== null) {
inOrderTraverseNode(node.prev, callback);
callback(node.element);
inOrderTraverseNode(node.next, callback);
}
}; let postOrderTraverseNode = function (node, callback) {
if (node !== null) {
postOrderTraverseNode(node.prev, callback);
postOrderTraverseNode(node.next, callback);
callback(node.element);
}
}; let minNode = function (node) {
if (node === null) return null; while (node && node.prev !== null) {
node = node.prev;
}
return node;
}; let maxNode = function (node) {
if (node === null) return null; while (node && node.next !== null) {
node = node.next;
}
return node;
}; let searchNode = function (node, key) {
if (node === null) return false; if (key < node.element) return searchNode(node.prev, key);
else if (key > node.element) return searchNode(node.next, key);
else return true;
}; let removeNode = function (node, key) {
if (node === null) return null; if (key < node.element) {
node.prev = removeNode(node.prev, key);
return node;
}
else if (key > node.element) {
node.next = removeNode(node.next, key);
return node;
}
else {
// 第一种情况:一个叶子节点(没有子节点)
if (node.prev === null && node.next === null) {
node = null;
return node;
}
// 第二种情况:只包含一个子节点
if (node.prev === null) {
node = node.next;
return node;
}
else if (node.next === null) {
node = node.prev;
return node;
} // 第三种情况:有两个子节点
let aux = minNode(node.next);
node.element = aux.element;
node.next = removeNode(node.next, aux.element);
return node;
}
}; class BinarySearchTree {
constructor () {
this.root = null;
} // 向树中插入一个节点
insert (key) {
let newNode = new Node(key); if (this.root === null) this.root = newNode;
else insertNode(this.root, newNode);
} // 在树中查找一个节点
search (key) {
return searchNode(this.root, key);
} // 通过先序遍历方式遍历树中的所有节点
preOrderTraverse (callback) {
preOrderTraverseNode(this.root, callback);
} // 通过中序遍历方式遍历树中的所有节点
inOrderTraverse (callback) {
inOrderTraverseNode(this.root, callback);
} // 通过后序遍历方式遍历树中的所有节点
postOrderTraverse (callback) {
postOrderTraverseNode(this.root, callback);
} // 返回树中的最小节点
min () {
return minNode(this.root);
} // 返回树中的最大节点
max () {
return maxNode(this.root);
} // 从树中移除一个节点
remove (key) {
this.root = removeNode(this.root, key);
}
}

BinarySearchTree

自平衡树

  上面的BST树(二叉搜索树)存在一个问题,树的一条边可能会非常深,而其它边却只有几层,这会在这条很深的分支上添加、移除和搜索节点时引起一些性能问题。如下图所示:

  为了解决这个问题,我们引入了自平衡二叉搜索树(AVL——Adelson-Velskii-Landi)。在AVL中,任何一个节点左右两棵子树的高度之差最多为1,添加或移除节点时,AVL树会尝试自平衡。对AVL树的操作和对BST树的操作一样,不同点在于我们还需要重新平衡AVL树,在讲解对AVL树的平衡操作之前,我们先看一下什么是AVL树的平衡因子。

  前面我们介绍过什么是树(子树)的高度,对于AVL树来说,每一个节点都保存一个平衡因子。

  节点的平衡因子 = 左子树的高度 - 右子树的高度

  观察下面这棵树,我们在上面标注了每个节点的平衡因子的值:

  所有子节点的平衡因子都为0,因为子节点没有子树。节点5的左右子树的高度都为1,所以节点5的平衡因子是0。节点9的左子树高度为1,右子树高度为0,所以节点9的平衡因子是+1。节点13的左子树高度为0,右子树高度为1,所以节点13的平衡因子是-1......AVL树的所有节点的平衡因子保持三个值:0、+1或-1。同时,我们也注意到,当某个节点的平衡因子为+1时,它的子树是向左倾斜的(left-heavy);而当某个节点的平衡因子为-1时,它的子树是向右倾斜的(right-heavy);当节点的平衡因子为0时,该节点是平衡的。一颗子树的根节点的平衡因子代表了该子树的平衡性。

  为了使AVL树重新达到平衡状态,我们需要对AVL树中的部分节点进行重新排列,使其既符合二叉搜索树的定义,又符合自平衡二叉树的定义,这个过程叫做AVL树的旋转。

  AVL树的旋转一共分为四种:

  • LL(left-left)旋转,新添加的节点位于树的根节点的左子树的左子树上。以非平衡因子的节点为中心将整棵树向右旋转。
  • LR(left-right)旋转,新添加的节点位于树的根节点的左子树的右子树上。先执行RR旋转,然后再执行LL旋转。
  • RR(right-right)旋转,新添加的节点位于树的根节点的右子树的右子树上。以非平衡因子的节点为中心将整棵树向左旋转。
  • RL(right-left)旋转,新添加的节点位于树的根节点的右子树的左子树上。先执行LL旋转,然后再执行RR旋转。

  下面是这四种旋转的操作示意图,后面我们会详细介绍每一种旋转的操作过程:

  对于LL旋转,在节点5的右子节点上添加节点4与在左子节点上添加节点3等同。对于LR旋转,在节点9的左子节点上添加节点8与在右子节点上添加节点10等同。对于RR旋转,在节点20的右子节点上添加节点25与在左子节点上添加节点18等同。对于RL旋转,在节点13的右子节点上添加节点14与在左子节点上添加节点12等同。

  我们的自平衡二叉树AVLTree类将从BinarySearchTree类继承,同时我们需要新增一个方法getNodeHeight()用来获取任意节点的高度。

class AVLTree extends BinarySearchTree {
constructor () {
super();
} // 计算节点的高度
getNodeHeight (node) {
if (node === null) return 0;
return Math.max(this.getNodeHeight(node.prev), this.getNodeHeight(node.next)) + 1;
};
}

  测试一下getNodeHeight()方法,我们还是以本文一开始的那棵树为例,然后看一下不同节点的高度。

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(5);
tree.insert(9);
tree.insert(13);
tree.insert(20);
tree.insert(3);
tree.insert(6);
tree.insert(8);
tree.insert(10);
tree.insert(12);
tree.insert(14);
tree.insert(18);
tree.insert(25); console.log(tree.getNodeHeight(tree.root)); //
console.log(tree.getNodeHeight(tree.search(7))); //
console.log(tree.getNodeHeight(tree.search(5))); //
console.log(tree.getNodeHeight(tree.min(7))); //

  根节点的高度为4,最小节点3的高度为1,节点5和节点7的高度分别为2和3。

  下面是四种旋转对应的实现代码:

/**
* LL旋转: 向右旋转
*
* b a
* / \ / \
* a e -> rotationLL(b) -> c b
* / \ / / \
* c d f d e
* /
* f
*
* @param node Node<T>
*/
rotationLL(node) {
let tmp = node.prev;
node.prev = tmp.next;
tmp.next = node;
return tmp;
} /**
* RR旋转: 向左旋转
*
* a b
* / \ / \
* c b -> rotationRR(a) -> a e
* / \ / \ \
* d e c d f
* \
* f
*
* @param node Node<T>
*/
rotationRR(node) {
let tmp = node.next;
node.next = tmp.prev;
tmp.prev = node;
return tmp;
} /**
* LR旋转: 先向左旋转,然后再向右旋转
* @param node Node<T>
*/
rotationLR(node) {
node.prev = this.rotationRR(node.prev);
return this.rotationLL(node);
} /**
* RL旋转: 先向右旋转,然后再向左旋转
* @param node Node<T>
*/
rotationRL(node) {
node.next = this.rotationLL(node.next);
return this.rotationRR(node);
}

  对于LL旋转和RR旋转,我们可以按照上面的示意图来看下执行过程。

  LL旋转,node=11,node.prev是7,所以tmp=7。然后将node.prev指向tmp.next,即将11的prev指向9。接着将tmp.next指向node,即将7的next指向11。即完成了图中所示的旋转。

  RR旋转,node=11,node.next是15,所以tmp=15。然后将node.next指向tmp.prev,即将11的next指向13。接着将tmp.prev指向node,即将15的prev指向11。即完成了图中所示的旋转。

  LR旋转是RR旋转和LL旋转的组合:

  RL旋转是LL旋转和RR旋转的组合:

  按照上面给出的示意图,我们的AVLTree类的insert()方法的实现如下:

insert (key) {
super.insert(key); // 左子树高度大于右子树高度
if (this.getNodeHeight(this.root.prev) - this.getNodeHeight(this.root.next) > 1) {
if (key < this.root.prev.element) {
this.root = this.rotationLL(this.root);
}
else {
this.root = this.rotationLR(this.root);
}
}
// 右子树高度大于左子树高度
else if (this.getNodeHeight(this.root.next) - this.getNodeHeight(this.root.prev) > 1) {
if (key > this.root.next.element) {
this.root = this.rotationRR(this.root);
}
else {
this.root = this.rotationRL(this.root);
}
}
}

  我们依次测试一下这四种情况。按照上面示意图中树的结构添加节点,然后按照前序遍历的方式打印节点的key。

  LL旋转的结果:

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(5);
tree.insert(9);
tree.insert(3); tree.preOrderTraverse((value) => console.log(value));

  LR旋转的结果:

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(5);
tree.insert(9);
tree.insert(8); tree.preOrderTraverse((value) => console.log(value));

  RR旋转的结果:

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(13);
tree.insert(20);
tree.insert(25); tree.preOrderTraverse((value) => console.log(value));

  RL旋转的结果:

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(13);
tree.insert(20);
tree.insert(14); tree.preOrderTraverse((value) => console.log(value));

  我们用同样的方式修改remove()方法,然后测试下面两种情况下的节点删除:

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(5);
tree.insert(9); tree.remove(15);
tree.preOrderTraverse((value) => console.log(value));

let tree = new AVLTree();
tree.insert(11);
tree.insert(7);
tree.insert(15);
tree.insert(13);
tree.insert(20); tree.remove(7);
tree.preOrderTraverse((value) => console.log(value));

  完整的自平衡二叉搜索树AVLTree类的代码如下:

 class AVLTree extends BinarySearchTree {
constructor () {
super();
} // 计算节点的高度
getNodeHeight (node) {
if (node === null) return 0;
return Math.max(this.getNodeHeight(node.prev), this.getNodeHeight(node.next)) + 1;
}; // 获取节点的平衡因子 /**
* LL旋转: 向右旋转
*
* b a
* / \ / \
* a e -> rotationLL(b) -> c b
* / \ / / \
* c d f d e
* /
* f
*
* @param node Node<T>
*/
rotationLL(node) {
let tmp = node.prev;
node.prev = tmp.next;
tmp.next = node;
return tmp;
} /**
* RR旋转: 向左旋转
*
* a b
* / \ / \
* c b -> rotationRR(a) -> a e
* / \ / \ \
* d e c d f
* \
* f
*
* @param node Node<T>
*/
rotationRR(node) {
let tmp = node.next;
node.next = tmp.prev;
tmp.prev = node;
return tmp;
} /**
* LR旋转: 先向左旋转,然后再向右旋转
* @param node Node<T>
*/
rotationLR(node) {
node.prev = this.rotationRR(node.prev);
return this.rotationLL(node);
} /**
* RL旋转: 先向右旋转,然后再向左旋转
* @param node Node<T>
*/
rotationRL(node) {
node.next = this.rotationLL(node.next);
return this.rotationRR(node);
} insert (key) {
super.insert(key); // 左子树高度大于右子树高度
if (this.getNodeHeight(this.root.prev) - this.getNodeHeight(this.root.next) > 1) {
if (key < this.root.prev.element) {
this.root = this.rotationLL(this.root);
}
else {
this.root = this.rotationLR(this.root);
}
}
// 右子树高度大于左子树高度
else if (this.getNodeHeight(this.root.next) - this.getNodeHeight(this.root.prev) > 1) {
if (key > this.root.next.element) {
this.root = this.rotationRR(this.root);
}
else {
this.root = this.rotationRL(this.root);
}
}
} remove (key) {
super.remove(key); // 左子树高度大于右子树高度
if (this.getNodeHeight(this.root.prev) - this.getNodeHeight(this.root.next) > 1) {
if (key < this.root.prev.element) {
this.root = this.rotationLL(this.root);
}
else {
this.root = this.rotationLR(this.root);
}
}
// 右子树高度大于左子树高度
else if (this.getNodeHeight(this.root.next) - this.getNodeHeight(this.root.prev) > 1) {
if (key > this.root.next.element) {
this.root = this.rotationRR(this.root);
}
else {
this.root = this.rotationRL(this.root);
}
}
}
}

AVLTree

  尽管自平衡二叉搜索树AVL可以很有效地帮助我们解决许多树节点的操作问题,但是在插入和移除节点时其性能并不是最好的。更好的选择是红黑树,红黑树也是一种自平衡二叉搜索树,但是它对其中的节点做了很多特殊的规定,使得在操作树节点的性能上要优于AVL。

  下一章我们将介绍如何用JavaScript来实现图这种非线性数据结构。

JavaScript数据结构——树的实现的更多相关文章

  1. JavaScript数据结构——树

    树:非顺序数据结构,对于存储需要快速查找的数据非常有用. 二叉树:二叉树中的节点最多只能有两个子节点(左侧子节点和右侧子节点).这些定义有助于我们写出更高效的向/从树中插入.查找和删除节点的算法. 二 ...

  2. JavaScript数据结构-树

    我认为这社会上,也不差钱好多人,可能好多人也不差权力.可是我认为能得到这样的满足的也不多. –郭小平<临汾红丝带学校校长> ​ 树是计算机科学中经经常使用到的一种数据结构. 树是一种非线性 ...

  3. 学习javascript数据结构(四)——树

    前言 总括: 本文讲解了数据结构中的[树]的概念,尽可能通俗易懂的解释树这种数据结构的概念,使用javascript实现了树,如有纰漏,欢迎批评指正. 原文博客地址:学习javascript数据结构( ...

  4. 为什么我要放弃javaScript数据结构与算法(第八章)—— 树

    之前介绍了一些顺序数据结构,介绍的第一个非顺序数据结构是散列表.本章才会学习另一种非顺序数据结构--树,它对于存储需要快速寻找的数据非常有用. 本章内容 树的相关术语 创建树数据结构 树的遍历 添加和 ...

  5. JavaScript 数据结构与算法之美 - 非线性表中的树、堆是干嘛用的 ?其数据结构是怎样的 ?

    1. 前言 想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手. 非线性表(树.堆),可以说是前端程序员的内功,要知其然,知其所以然. 笔者写的 JavaScript 数据结构与算法 ...

  6. javascript数据结构与算法-- 二叉树

    javascript数据结构与算法-- 二叉树 树是计算机科学中经常用到的一种数据结构.树是一种非线性的数据结构,以分成的方式存储数据,树被用来存储具有层级关系的数据,比如文件系统的文件,树还被用来存 ...

  7. 为什么我要放弃javaScript数据结构与算法(第九章)—— 图

    本章中,将学习另外一种非线性数据结构--图.这是学习的最后一种数据结构,后面将学习排序和搜索算法. 第九章 图 图的相关术语 图是网络结构的抽象模型.图是一组由边连接的节点(或顶点).学习图是重要的, ...

  8. 为什么我要放弃javaScript数据结构与算法(第七章)—— 字典和散列表

    本章学习使用字典和散列表来存储唯一值(不重复的值)的数据结构. 集合.字典和散列表可以存储不重复的值.在集合中,我们感兴趣的是每个值本身,并把它作为主要元素.而字典和散列表中都是用 [键,值]的形式来 ...

  9. JavaScript数据结构——字典和散列表的实现

    在前一篇文章中,我们介绍了如何在JavaScript中实现集合.字典和集合的主要区别就在于,集合中数据是以[值,值]的形式保存的,我们只关心值本身:而在字典和散列表中数据是以[键,值]的形式保存的,键 ...

随机推荐

  1. c++ 求int数组的长度

    c++ 求int数组的长度 网上有一些方法是 sizeof(arr) / sizeof(arr[0]); 这种方法放在函数中,是不对的 我自己的方法是 #include <bits/stdc++ ...

  2. 站在巨人的肩膀上看Servlet——原来如此(更适合初学者认识Servlet)

    前言: 有段时间没更新博客了,这段时间因为要准备考试,考完试后又忙了一阵别的事,一直没能静下心来写博客.大学考试真是越来越恶心了,各种心酸,那酸爽,够味.不过还好,马上就要大三了,听大三学长学姐说大三 ...

  3. Python中字符串常见操作

    (1)find 查找 格式:mystr.find(str, start, end) 例如: mystr.find(str, start=0, end=len(mystr)) 作用:检测str是否包含在 ...

  4. Bzoj 2288 生日礼物题解

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 856  Solved: 260[Submit][S ...

  5. MyBatis OGNL表达式用法

    From<MyBatis从入门到精通> <!-- 4.7 OGNL用法 MyBatis常用的OGNL表达式: e1 or e2: e1 and e2 e1 == e2; e1 != ...

  6. idea万能快捷键(alt enter),你不知道的17个实用技巧!!!

    说明 IDEA里有一个万能快捷键(alt enter),功能非常强大,同一个快捷键,可以根据不同的语境提示你不同的操作, 很多人可能还不了解这些功能,在处理代码的时候还手动处理,了解这些技巧之后,你编 ...

  7. 浅谈redis

    1.Redis简介: Redis是一个开源的使用ANSI C语言编写,遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.它通常被称为数据结构服务 ...

  8. [leetcode] 45. Jump Game II(hard)

    原题 题意: 是Jump Game的衍生题(题解),题意求跳到最后一格所需最少步数,(默认所测数据永远可以跳到最后一格). 思路: 利用贪心,遍历数组,记录在每一步可跳跃到的最大区域. 1.当前步数 ...

  9. 基于 HTML5 WebGL 的民航客机飞行监控系统

    前言 前些日子出差,在飞机上看到头顶的监控面板,除了播放电视剧和广告之外,还会时不时的切换到一个飞机航行的监控系统,不过整个监控系统让人感到有一点点的简陋,所以我就突发奇想制作了一个采用 HT for ...

  10. X-Admin&ABP框架开发-消息通知

    业务型网站使用过程中,消息通知是一个不可或缺的功能,采用站内通知.短信通知.邮件通知.微信通知等等各种方式都有,ABP框架对这部分工作已经封装的很好了,站在巨人的肩膀上,一览全貌,带来的就是心情舒畅. ...