Battle over Cities

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 467    Accepted Submission(s): 125

Problem Description
It is vitally important to have all the cities connected by highways in a war, but some of them are destroyed now because of the war. Furthermore,if a city is conquered, all the highways from/toward that city will be closed by the enemy, and we must repair some destroyed highways to keep other cities connected, with the minimum cost if possible.
Given the map of cities which have all the destroyed and remaining highways marked, you are supposed to tell the cost to connect other cities if each city is conquered by the enemy.
 
Input
The input contains multiple test cases. The first line is the total number of cases T (T ≤ 10). Each case starts with a line containing 2 numbers N (0 < N ≤ 20000), and M (0 ≤ M ≤ 100000), which are the total number of cities, and the number of highways, respectively. Then M lines follow, each describes a highway by 4 integers: City1 City2 Cost Status where City1 and City2 are the numbers of the cities the highway connects (the cities are numbered from 1 to N), Cost (0 < Cost ≤ 20000) is the effort taken to repair that highway if necessary, and Status is either 0, meaning that highway is destroyed, or 1, meaning that highway is in use.
Note: It is guaranteed that the whole country was connected before the war and there is no duplicated high ways between any two cities.
 
Output
For each test case, output N lines of integers. The integer in the i-th line indicates the cost to keep the cities connected if the i-th city is conquered by the enemy. In case the cities cannot be connected after the i-th city is conquered by the enemy, output "inf" instead in the corresponding place.
 
Sample Input
3
4 5
1 2 1 1
1 3 1 1
2 3 1 0
2 4 1 1
3 4 2 0
4 5
1 2 1 1
1 3 1 1
2 3 1 0
2 4 1 1
3 4 1 0
3 2
1 2 1 1
1 3 1 1
 
Sample Output
1
2
0
0
1
1
0
0
inf
0
0
 
Author
GUAN, Yao
 
Source
 
Recommend
zhengfeng   |   We have carefully selected several similar problems for you:  3719 3718 3717 3716 3715 

 题解:给定一张N个点,M条边的无向连通图,每条边上有边权w,求删去每一个后的最小生成树。
思路:如果暴力删除每个点后重新建图,跑 Kruskal的话 时间复杂度O(NM),显然不行。
我们考虑先求出没有删点的最小生成树,然后如果我们删除一个点,那么和这个点相连的边全都得去掉,只剩下 该点的邻接点(子节点)和它的父亲节点(可能没有),那么我们只需要在我的子节点连向我的父亲节点的边和我的子树之间的连边中跑一遍MST就行了。

怎么预处理呢?
(1)连接子树之间的边。对于每条连接u,v没有在初始最小生成树里面的边,先求出u,v的lca,则这条边就是连接u的dep[u]-dep[lca]-1个father和v的dep[v]-dep[lca]-1个father的子树的边。用倍增求即可。
(2)连向父亲子树外面的边。对于每条连接u,v没有在初始最小生成树里面的边,先求出u,v的lca,则对于u的dep[u]-dep[lca]-2个father到u这条路径上的所有点,这条边都是连到它们父亲的子树外面的。注意,连向父亲子树外面的边只要取最小的一条即可,于是用倍增+树链剖分进行维护连向父亲子树外面的边的最短长度。对于v同理。
但为什么对每个点把所有可供选择的边预处理出来,再对这些边进行一次最小生成树不会超时呢?我们可以这样来想。因为一次Kruskal并查集的find操作是log(n)的,最坏情况下每条边都会用到一次find,因此重点是求出共有多少条边被用到。连接子树之间的边最多m-n条,连向子树外的边最多n条,所以总共进行m次find。对于m-n条不在最小生成树中的边,都进行预处理,一次预处理倍增是log(n)的,树剖是log(n)*log(n)的。因此,总时间复杂度为O(m log n+ m log n log n)。

参考代码:
#include<bits/stdc++.h>
using namespace std;
const int N=2e4+;
const int M=1e5+;
const int inf=;
int T,n,m,ns,cnt,tim,head[N],to[N<<],nxt[N<<];
int dep[N],fa[N][],siz[N],son[N],dfn[N],pos[N],top[N];
int minn[N],minv[N<<],tag[N<<];
bool use[M];
int s,mst,smst,pa[N],w[N],sont[N],num[N];
struct edge{
int u,v,d;
bool operator < (const edge &x)const{return d<x.d;}
} e[M];
vector<edge> link[N],edges;
void Init()
{
smst=tim=cnt=;
memset(use,,sizeof(use));
memset(head,,sizeof(head));
memset(dep,,sizeof(dep));
memset(fa,,sizeof(fa));
memset(son,,sizeof(son));
memset(sont,,sizeof(sont));
memset(w,,sizeof(w));
memset(minv,,sizeof(minv));
memset(tag,,sizeof(tag));
for(int i=;i<=n;i++) pa[i]=i,link[i].clear();
}
void AddEdge(int u,int v)
{
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
}
int Find(int u){return u==pa[u]?u:pa[u]=Find(pa[u]);}
void dfs1(int u)
{
for(int i=;(<<i)<=dep[u];++i)
fa[u][i]=fa[fa[u][i-]][i-];
siz[u]=;
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v==fa[u][]) continue;
fa[v][]=u;
dep[v]=dep[u]+;
num[v]=++sont[u];
dfs1(v);
siz[u]+=siz[v];
if(!son[u]||siz[son[u]]<siz[v]) son[u]=v;
}
}
void dfs2(int u,int tp)
{
dfn[u]=++tim;
pos[tim]=u;
top[u]=tp;
if(son[u]) dfs2(son[u],tp);
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v!=fa[u][]&&v!=son[u]) dfs2(v,v);
}
}
void pushdown(int rt)
{
minv[rt<<]=min(minv[rt<<],tag[rt]);
minv[rt<<|]=min(minv[rt<<|],tag[rt]);
tag[rt<<]=min(tag[rt<<],tag[rt]);
tag[rt<<|]=min(tag[rt<<|],tag[rt]);
tag[rt]=inf;
}
void upd(int rt,int l,int r,int L,int R,int x)
{
if(L<=l&&R>=r)
{
minv[rt]=min(minv[rt],x);
tag[rt]=min(tag[rt],x);
return;
}
if(tag[rt]!=inf) pushdown(rt);
int mid=(l+r)/;
if(L<=mid) upd(rt<<,l,mid,L,R,x);
if(R>mid) upd(rt<<|,mid+,r,L,R,x);
minv[rt]=min(minv[rt<<],minv[rt<<|]);
}
void update(int u,int v,int x)
{
while(top[u]!=top[v])
{
upd(,,n,dfn[top[u]],dfn[u],x);
u=fa[top[u]][];
}
upd(,,n,dfn[v],dfn[u],x);
}
void getmin(int rt,int l,int r)
{
if(l==r)
{
minn[pos[l]]=minv[rt];
return;
}
if(tag[rt]!=inf) pushdown(rt);
int mid=(l+r)/;
getmin(rt<<,l,mid);
getmin(rt<<|,mid+,r);
}
void work(edge &e)
{
int u=e.u,v=e.v,d;
d=dep[u]-dep[v];
for(int i=;(<<i)<=d;i++)
if(d&(<<i)) u=fa[u][i]; if(u==v)
{
u=e.u;
d=dep[u]-dep[v]-;
if(d<) return;
for(int i=;(<<i)<=d;i++)
if(d&(<<i)) u=fa[u][i];
update(e.u,u,e.d);
return;
}
int tmpu=u,tmpv=v;
for(int i=;i>=;i--)
{
if(fa[tmpu][i]!=fa[tmpv][i])
{
tmpu=fa[tmpu][i];
tmpv=fa[tmpv][i];
}
}
link[fa[tmpu][]].push_back((edge){tmpu,tmpv,e.d});
d=dep[e.u]-dep[tmpu]-;
if(d>=)
{
u=e.u;
for(int i=;(<<i)<=d;i++)
if(d&(<<i)) u=fa[u][i];
update(e.u,u,e.d);
}
d=dep[e.v]-dep[tmpv]-;
if(d>=)
{
v=e.v;
for(int i=;(<<i)<=d;i++)
if(d&(<<i)) v=fa[v][i];
update(e.v,v,e.d);
}
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
Init();
int d,f;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&e[i].u,&e[i].v,&d,&f);
e[i].d=d*(-f);
}
sort(e+,e+m+);
ns=;
for(int i=;i<=m&&ns<n-;i++)
{
int u=Find(e[i].u),v=Find(e[i].v);
if(u!=v)
{
use[i]=true;
pa[v]=u;
ns++;
AddEdge(e[i].u,e[i].v);
AddEdge(e[i].v,e[i].u);
w[e[i].u]+=e[i].d;
w[e[i].v]+=e[i].d;
smst+=e[i].d;
}
}
dfs1(); dfs2(,);
for(int i=;i<=m;i++)
{
if(!use[i])
{
if(dep[e[i].u]<dep[e[i].v])
swap(e[i].u,e[i].v);
work(e[i]);
}
}
getmin(,,n);
for(int i=;i<=n;i++)
{
edges.clear();
s=sont[i];
if(fa[i][])//把所有连向i上面的边加进去
{
++s;
for(int j=head[i];j;j=nxt[j])
{
int v=to[j];
if(v!=fa[i][]&&minn[v]!=inf)
edges.push_back((edge){num[v],s,minn[v]});
}
}
for(int j=;j<link[i].size();j++)//把i的邻接点之间的连边加进去
edges.push_back((edge){num[link[i][j].u],num[link[i][j].v],link[i][j].d});
sort(edges.begin(),edges.end());
mst=;
for(int j=;j<=s;j++) pa[j]=j;
ns=;
for(int j=;j<edges.size()&&ns<s-;j++)
{
int u=Find(edges[j].u),v=Find(edges[j].v);
if(u!=v)
{
pa[v]=u;
ns++;
mst+=edges[j].d;
}
}
if(ns<s-) puts("inf");
else printf("%d\n",smst-w[i]+mst);
}
}
return ;
}

HDU3710 Battle over Cities(最小生成树+树链剖分+倍增+线段树)的更多相关文章

  1. BZOJ 3083 树链剖分+倍增+线段树

    思路: 先随便选个点 链剖+线段树 1操作 就直接改root变量的值 2操作 线段树上改 3操作 分成三种情况 1.new root = xx 整个子树的min就是ans 2. lca(new roo ...

  2. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  3. bzoj 1036 [ZJOI2008]树的统计Count(树链剖分,线段树)

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 10677  Solved: 4313[Submit ...

  4. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  5. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  6. bzoj 2243 [SDOI2011]染色(树链剖分,线段树)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4637  Solved: 1726[Submit][Status ...

  7. HDU 4366 Successor(树链剖分+zkw线段树+扫描线)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...

  8. 【BZOJ3531】旅行(树链剖分,线段树)

    [BZOJ3531]旅行(树链剖分,线段树) 题面 Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足 从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教 ...

  9. 【BZOJ5507】[GXOI/GZOI2019]旧词(树链剖分,线段树)

    [BZOJ5507][GXOI/GZOI2019]旧词(树链剖分,线段树) 题面 BZOJ 洛谷 题解 如果\(k=1\)就是链并裸题了... 其实\(k>1\)发现还是可以用类似链并的思想,这 ...

随机推荐

  1. 深入理解计算机系统 第八章 异常控制流 part2

    关于进程,需要关注其提供给应用程序的两个关键抽象: 1.一个独立的逻辑控制流,它提供一个假象,好像我们的程序独占地使用处理器 2.一个私有的地址空间,它提供一个假象,好像我们的程序独占地使用内存系统 ...

  2. PHP队列的实现详细操作步骤

    队列是一种特殊的线性表,它只允许在表的前端,可以称之为front,进行删除操作:而在表的后端,可以称之为rear进行插入操作.队列和堆栈一样,是一种操作受限制的线性表,和堆栈不同之处在于:队列是遵循“ ...

  3. MD5 加盐加密

    一.概述 MD5(Message Digest  Algorithm 5),是一种散列算法,是不可逆的,即通过md5加密之后没办法得到原文,没有解密算法. 在一般的项目中都会有登录注册功能,最简单的, ...

  4. ASP.NET Core 3.0 gRPC 身份认证和授权

    一.开头聊骚 本文算是对于 ASP.NET Core 3.0 gRPC 研究性学习的最后一篇了,以后在实际使用中,可能会发一些经验之文.本文主要讲 ASP.NET Core 本身的认证授权和gRPC接 ...

  5. nyoj 122-Triangular Sums (数学之读懂求和公式的迭代)

    122-Triangular Sums 内存限制:64MB 时间限制:3000ms 特判: No 通过数:5 提交数:7 难度:2 题目描述: The nth Triangular number, T ...

  6. Go 语言优秀资源整理,为项目落地加速🏃

    最后更新于2019.11.22 Go 语言优秀资源整理,为项目落地加速

  7. SpringBoot 源码解析 (七)----- Spring Boot的核心能力 - 自定义Servlet、Filter、Listener是如何注册到Tomcat容器中的?(SpringBoot实现SpringMvc的原理)

    上一篇我们讲了SpringBoot中Tomcat的启动过程,本篇我们接着讲在SpringBoot中如何向Tomcat中添加Servlet.Filter.Listener 自定义Servlet.Filt ...

  8. 内网环境搭建NTP服务器

    说在前面:ntp和ntpdate区别 ①两个服务都是centos自带的(centos7中不自带ntp).ntp的安装包名是ntp:ntpdate的安装包是ntpdate.他们并非由一个安装包提供. ② ...

  9. linux网络配置(iproute2)

    iproute2家族 ip命令:show  / manipulate routing,devices,policy routing and tunnels(显示/操纵路由.设备.策略路由和隧道) 语法 ...

  10. 01-tornado练习-tornado简介

    # coding = utf-8 """ 启动一个tornado的web服务 """ import tornado.web from tor ...