线代第六章定义&定理整理(持续更新中)
Chapter 6
6.1 Inner Products and Norms
Definition (inner product).
Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:
(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)
(b) $⟨cx,y⟩=c⟨x,y⟩. $
(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.
(d) \(⟨x,x⟩>0\) if \(x \neq 0\).
Definition (conjugate transpose).
Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).
Definition (inner product space).
A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.
Definition of some inner products.
Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)
实际上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。
Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).
实际上和Frobenius inner product是一个东西。
H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).
Theorem 6.1.
Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.
(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).
(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).
(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).
(d) \(⟨x,x⟩=0\) if and only if \(x=0\).
(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).
性质(a)和(b)统称conjugate linear,注意不要漏写共轭。
Definition (norm).
Let \(V\) be an inner product space. For \(x ∈ V\), we define the
线代第六章定义&定理整理(持续更新中)的更多相关文章
- java视频教程 Java自学视频整理(持续更新中...)
视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...
- docker学习资料整理(持续更新中..)
docker最近可以说火得一踏糊涂,跟 51大神在交流技术的时候这个东西会多次被提到,当我们还玩vm+linux/freebsd的时候,人家已经上升到更高层次了,这就是差距,感觉好高大上的样子,技术之 ...
- “全栈2019”Java第十六章:下划线在数字中的意义
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- 2018年最新Java面试题及答案整理(持续完善中…)
2018年最新Java面试题及答案整理(持续完善中…) 基础篇 基本功 面向对象特征 封装,继承,多态和抽象 封装封装给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法来改变它内 ...
- BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js
BAT 前端开发面经 —— 吐血总结 目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...
- iOS --- 总结Objective-C中经常使用的宏定义(持续更新中)
将iOS开发中经常使用的宏定义整理例如以下,仅包括Objective-C. 而对于Swift,不能使用宏,则能够定义全局函数或者extension.请參考博客iOS - 总结Swift中经常使用的全局 ...
- 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...)
目录 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...) Java书写规范 IDEA的一些常用快捷键 Java类中作为成员变量的类 Java源文件中只能有一个public类 Java中 ...
- 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...
- 常见 git 需求整理(持续更新中)
首发于 语雀文档 突然感觉自己对 git 还是挺熟悉的,因为团队里新来的七八号应届生来问我 git 问题,基本没有答不上的情况,但为了能更好地对知识进行整理,还是记录一下为好. (希望能)持续更新.. ...
随机推荐
- 【LOJ#6682】梦中的数论(min_25筛)
[LOJ#6682]梦中的数论(min_25筛) 题面 LOJ 题解 注意题意是\(j|i\)并且\((j+k)|i\), 不难发现\(j\)和\((j+k)\)可以任意取\(i\)的任意因数,且\( ...
- oidc hybrid flow 与另外两种模式的异同
很多学习identityserver的文章都没有解释清楚oidc hybrid混合模式的含义.本文将解释hybrid模式与另外两种模式的主要区别. 我们先看一下一手文档: https://openid ...
- 从新手小白到老手大白的成长之路第二弹-WPF之UI界面之Grid面板
废话不多说,接下来直接开始介绍WPF-UI界面-Grid面板 如图就是创建好了的一个WPF项目,整个界面被一个Window窗体包含起来,上面类似于什么什么网址什么的其实就相当于.net的命名空间,缺什 ...
- 设计模式-单例模式(winfrom带参)
一.单例模式 就是在整个代码全局中,只有一个实例.比如Log4.NET或者窗体程序. 二.实战演练 通过字段cSOCode获取窗体,窗体只有一个且cSOCode值不同获取的窗体也不同. private ...
- Implement Dependent Reference Properties实现依赖引用属性 (EF)
In this lesson, you will learn how to implement properties whose values can depend on other properti ...
- Django 全局log process_exception中间件
class BaseResp: # 基础的返回值类 def __init__(self, code, msg, data): self.code = code self.msg = msg self. ...
- iOS开发时获取第一响应者
上篇中提到键盘相应时间中用到了获取当前第一响应者的方法是苹果的是有方法,无法上传到App Store,本文将介绍一种非常简单的且未用到私有API的方法来获取当前第一响应者. 实现思路:用到的iOS A ...
- 【Android】Handler消息机制
Handler消息机制主要涉及Looper.Handler.MessageQueue.Message.其中,Looper主要负责获取消息,Handler负责发送消息及处理消息,MessageQueue ...
- linux权限管理-特殊权限
目录 linux权限管理-特殊权限 一,特殊权限 Linux权限属性chattr概述 linux进程掩码umask linux权限管理-特殊权限 一,特殊权限 1.suid(4000) SetUID( ...
- Flask 安装环境(虚拟环境安装)
Flask 安装环境 使用虚拟环境安装Flask,可以避免包的混乱和冲突,虚拟环境是python解释器的副本,在虚拟环境中你可以安装扩展包,为每个程序 单独创建虚拟环境,可以保证程序只能访问虚拟环境中 ...