Chapter 6

6.1 Inner Products and Norms

Definition (inner product).

Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:

(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)

(b) $⟨cx,y⟩=c⟨x,y⟩. $

(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.

(d) \(⟨x,x⟩>0\) if \(x \neq 0\).

Definition (conjugate transpose).

Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).

Definition (inner product space).

A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.

Definition of some inner products.

Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)

实际上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。

Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).

实际上和Frobenius inner product是一个东西。

H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).

Theorem 6.1.

Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.

(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).

(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).

(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).

(d) \(⟨x,x⟩=0\) if and only if \(x=0\).

(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).

性质(a)和(b)统称conjugate linear,注意不要漏写共轭。

Definition (norm).

Let \(V\) be an inner product space. For \(x ∈ V\), we define the

线代第六章定义&定理整理(持续更新中)的更多相关文章

  1. java视频教程 Java自学视频整理(持续更新中...)

    视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...

  2. docker学习资料整理(持续更新中..)

    docker最近可以说火得一踏糊涂,跟 51大神在交流技术的时候这个东西会多次被提到,当我们还玩vm+linux/freebsd的时候,人家已经上升到更高层次了,这就是差距,感觉好高大上的样子,技术之 ...

  3. “全栈2019”Java第十六章:下划线在数字中的意义

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  4. 2018年最新Java面试题及答案整理(持续完善中…)

    2018年最新Java面试题及答案整理(持续完善中…) 基础篇 基本功 面向对象特征 封装,继承,多态和抽象 封装封装给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法来改变它内 ...

  5. BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js

    BAT 前端开发面经 —— 吐血总结   目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...

  6. iOS --- 总结Objective-C中经常使用的宏定义(持续更新中)

    将iOS开发中经常使用的宏定义整理例如以下,仅包括Objective-C. 而对于Swift,不能使用宏,则能够定义全局函数或者extension.请參考博客iOS - 总结Swift中经常使用的全局 ...

  7. 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...)

    目录 一些JavaSE学习过程中的思路整理(主观性强,持续更新中...) Java书写规范 IDEA的一些常用快捷键 Java类中作为成员变量的类 Java源文件中只能有一个public类 Java中 ...

  8. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  9. 常见 git 需求整理(持续更新中)

    首发于 语雀文档 突然感觉自己对 git 还是挺熟悉的,因为团队里新来的七八号应届生来问我 git 问题,基本没有答不上的情况,但为了能更好地对知识进行整理,还是记录一下为好. (希望能)持续更新.. ...

随机推荐

  1. MySQL 中的字符串类型

    字符类型包括: CHAR VARCHAR BINARY VARBINARY BLOB TEXT ENUM SET CHAR 与 VARCHAR CHAR(m) m 取值范围 0-255.列宽固定,存储 ...

  2. LabVIEW工控二进制数据存储

    在文件存储的逻辑上,二进制文件基于值编码,而不是字符编码,其占用空间小,读取/写入速度快,但是译码比较复杂,不利用数据共享.根据具体编码方式的不同,二进制的使用方式也有所不同,如对bmp格式,规定了文 ...

  3. CSS3/CSS之居中解析(水平+垂直居中、水平居中,垂直居中)

    首先,我们来看下垂直居中: (1).如果是单行文本,则可以设置的line-height的数值,让其等于父级元素的高度! <!DOCTYPE html> <html lang=&quo ...

  4. 推荐一款适合Dynamics 365/Dynamics CRM 2016 使用的弹出窗插件AlertJs

    Github地址: https://github.com/PaulNieuwelaar/alertjs 目前有两个版本,3.0版本(30天免费试用)以及2.1版本(完全免费) ------------ ...

  5. Android 工程的创建

    还望支持个人博客站:http://www.enjoytoday.cn 本章节主要介绍如何开始Android工程的创建和android开发过程中需要的一些简单的技巧和知识.首篇文章主要介绍如何开始And ...

  6. 8.python3实用编程技巧进阶(三)

    3.1.如何实现可迭代对象和迭代器对象 #3.1 如何实现可迭代对象和迭代器对象 import requests from collections.abc import Iterable,Iterat ...

  7. 使用ML.NET进行自定义机器学习

    ML.NET是Microsoft最近发布的用于机器学习的开源,跨平台,代码优先的框架.尽管对我们来说是一个新的框架,但该框架的根源是Microsoft Research,并且在过去十年中已被许多内部团 ...

  8. 开源敏捷测试管理& 开源BUG跟踪管理软件itest(爱测试) V3.3.1小改紧急发布及正实现功能预告

    v3.3.1 下载地址 :itest下载 码云源码地址 https://gitee.com/itestwork/itest 开源中国  itest项目地址   https://www.oschina. ...

  9. ACM-冒泡排序

    将多组输入数据进行冒泡排序,并去除相同的数据 #include <iostream> #include <vector> using namespace std; void R ...

  10. blue bossa

    blue bossa