Robbery
Time Limit: 1000MS   Memory Limit: 32768K
Total Submissions: 1249   Accepted: 504

Description

Inspector Robstop is very angry. Last night, a bank has been robbed and the robber has not been caught. And this happened already for the third time this year, even though he did everything in his power to stop the robber: as quickly as possible, all roads leading out of the city were blocked, making it impossible for the robber to escape. Then, the inspector asked all the people in the city to watch out for the robber, but the only messages he got were of the form "We don't see him."
But this time, he has had enough! Inspector Robstop decides to
analyze how the robber could have escaped. To do that, he asks you to
write a program which takes all the information the inspector could get
about the robber in order to find out where the robber has been at which
time.

Coincidentally, the city in which the bank was robbed has a
rectangular shape. The roads leaving the city are blocked for a certain
period of time t, and during that time, several observations of the form
"The robber isn't in the rectangle Ri at time ti" are reported.
Assuming that the robber can move at most one unit per time step, your
program must try to find the exact position of the robber at each time
step.

Input

The
input contains the description of several robberies. The first line of
each description consists of three numbers W, H, t (1 <= W,H,t <=
100) where W is the width, H the height of the city and t is the time
during which the city is locked.

The next contains a single integer n (0 <= n <= 100), the
number of messages the inspector received. The next n lines (one for
each of the messages) consist of five integers ti, Li, Ti, Ri, Bi each.
The integer ti is the time at which the observation has been made (1
<= ti <= t), and Li, Ti, Ri, Bi are the left, top, right and
bottom respectively of the (rectangular) area which has been observed.
(1 <= Li <= Ri <= W, 1 <= Ti <= Bi <= H; the point (1,
1) is the upper left hand corner, and (W, H) is the lower right hand
corner of the city.) The messages mean that the robber was not in the
given rectangle at time ti.

The input is terminated by a test case starting with W = H = t = 0. This case should not be processed.

Output

For
each robbery, first output the line "Robbery #k:", where k is the
number of the robbery. Then, there are three possibilities:

If it is impossible that the robber is still in the city considering the messages, output the line "The robber has escaped."

In all other cases, assume that the robber really is in the city.
Output one line of the form "Time step : The robber has been at x,y."
for each time step, in which the exact location can be deduced. (x and y
are the column resp. row of the robber in time step .) Output these
lines ordered by time .

If nothing can be deduced, output the line "Nothing known." and hope that the inspector will not get even more angry.

Output a blank line after each processed case.

Sample Input

4 4 5
4
1 1 1 4 3
1 1 1 3 4
4 1 1 3 4
4 4 2 4 4
10 10 3
1
2 1 1 10 10
0 0 0

Sample Output

Robbery #1:
Time step 1: The robber has been at 4,4.
Time step 2: The robber has been at 4,3.
Time step 3: The robber has been at 4,2.
Time step 4: The robber has been at 4,1. Robbery #2:
The robber has escaped.

Source

OJ-ID:
poj-1104

author:
Caution_X

date of submission:
20191024

tags:
模拟

description modelling:
给定一个矩形,现在给定四个点构成一个扫描矩形(扫描矩形在矩形内),表示该扫描矩形范围内没有盗贼,现在给出N个这样的扫描矩形,每个扫描矩形都有对应的时间,表示该扫描发生的时间,现在问能否通过N次扫描判断盗贼的状态(已逃离(离开给定的坐标范围),不确定,或者确定在点(x,y))

major steps to solve it:
vis[t][r][c]=1表示t时刻(r,c)处有盗贼
(1)按照时间正向反向搜索两次,每次扫描的目的在于判断vis[t][r][c]为0的点应不应该是1(因为扫描矩形范围内是1不代表扫描矩形外一定是0,有一些点虽然在扫描矩形外,但它依然必须是1)
(2)完成两次扫描之后遍历时间1~T状态下矩形的点,如果存在某个状态全为1,说明盗贼已经离开了矩形(已逃离),如果某个状态整个矩形只有一点是0,说明该状态下盗贼就在该点。如果所有时间的矩形都扫描过了而且没有得到盗贼的状态,输出不确定时的答案。
正向搜索方式:如果t时刻在(r,c)即vis[t][r][c]=0,那么t-1时刻必然在(r,c)周围(含(r,c))的5个点内,如果这5个点都是1,那么实际上vis[t][r][c]=1。反向搜索类似。

AC code:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int vis[][][];//vis[t][r][c]=1表示第t时刻r行c列没有盗贼
int dir[][]={{,},{,},{,},{,-},{-,}};
int res[][]; //res[i][]表示第i时刻可能的位置
int W,H,T;
bool inrange(int r,int c)
{
return (r>=&&r<=H&&c>=&&c<=W);
}
void change(int r,int c,int t,int pre_t)
{
if(vis[t][r][c]) return;
for(int d=;d<;d++) {
int tmp_r=r+dir[d][];
int tmp_c=c+dir[d][];
if(inrange(tmp_r,tmp_c)&&!vis[pre_t][tmp_r][tmp_c]) return;
}
vis[t][r][c]=;
return;
}
int main()
{
//freopen("input.txt","r",stdin);
int kase=;
while(~scanf("%d%d%d",&W,&H,&T)&&W&&H&&T) {
printf("Robbery #%d:\n",kase++);
memset(vis,,sizeof(vis));
int N;
scanf("%d",&N);
while(N--) {
int Li,Ri,Ti,Bi,t;
scanf("%d%d%d%d%d",&t,&Li,&Ti,&Ri,&Bi);
for(int i=Ti;i<=Bi;i++) {
for(int j=Li;j<=Ri;j++) {
vis[t][i][j]=;
}
}
}
for(int d=;d<;d++) {
for(int i=;i<=T;i++) {
for(int r=;r<=H;r++) {
for(int c=;c<=W;c++) {
if(d==&&i!=) change(r,c,i,i-);
else change(r,c,T-i+,T-i+);
}
}
}
}
int escaped=,unknown=;
memset(res,-,sizeof(res));
for(int i=;i<=T;i++) {
bool is_allone=true;
bool is_twice_one=false;
for(int r=;r<=H;r++) {
for(int c=;c<=W;c++) {
if(!vis[i][r][c]) {
is_allone=false;
if(res[i][]==-) {
res[i][]=r;
res[i][]=c;
}
else if(res[i][]>=) {
res[i][]=-;
is_twice_one=true;
break;
}
}
}
if(is_twice_one) break;
}
if(!is_allone) escaped=;
if(res[i][]>=) unknown=;
}
if(escaped) printf("The robber has escaped.\n");
else if(unknown) printf("Nothing known.\n");
else {
for(int i=;i<=T;i++) {
if(res[i][]>=) {
printf("Time step %d: The robber has been at %d,%d.\n",i,res[i][],res[i][]);
}
}
}
printf("\n");
}
return ;
}

poj-1104 Robbery的更多相关文章

  1. POJ 3900 The Robbery

    大意:和背包的问题相似,第 i 个箱子有 i 颗钻石.钻石的重量,价值给出.然后再M的重量下背尽量多价值的钻石. 思路:直接暴搜然后剪枝.因为数据范围的原因无法用DP. #include <cs ...

  2. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  3. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

  4. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  5. 搜索+剪枝 POJ 1416 Shredding Company

    POJ 1416 Shredding Company Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5231   Accep ...

  6. OpenJudge 2803 碎纸机 / Poj 1416 Shredding Company

    1.链接地址: http://poj.org/problem?id=1416 http://bailian.openjudge.cn/practice/2803 2.题目: 总时间限制: 1000ms ...

  7. [POJ] 1511 Invitation Cards

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 18198   Accepted: 596 ...

  8. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  9. POJ 1416 Shredding Company【dfs入门】

    题目传送门:http://poj.org/problem?id=1416 Shredding Company Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  10. POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra)

    Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 16178   Accepted: 526 ...

随机推荐

  1. CentOS安装Docker-ce并配置中国国内加速(aliyun)镜像

    前提条件 1.系统.内核 CentOS7 要求64位系统.内核版本3.10以上 CentOS6 要求版本在6.5以上,系统64位.内核版本2.6.32-431以上 查看内核版本号 uname -r # ...

  2. 你以为你真的了解final吗?

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  3. 5-API 网关 kong 实战

    原文:https://cloud.tencent.com/developer/article/1477672 1. 什么是Kong? 目前互联网后台架构一般是采用微服务,或者类似微服务的形式,应用的请 ...

  4. String trim() ,去除当前字符串两边的空白字符

    package seday01;/** * String trim() * 去除当前字符串两边的空白字符 * @author xingsir */public class TrimDemo { pub ...

  5. 搭建RTMP直播流服务器

    最近项目比较紧张,所以没什么时间写博客,正好这几天没什么事,赶紧记录下自己最近所学. 环境配置 服务器选用 服务器我选择的是小鸟云 ,原因很简单,他的个人用户有3个月免费使用时间. 服务器环境 Win ...

  6. NDK简介

    一.NDK简介: C/C++的动态库.Dalvik通过JNI编程方式调用C/C++代码. NDK编程提高软件性能,加密保护APK文件 ndk-build        NDK编译生成脚本 Java编译 ...

  7. CODING 签约天津大学,助力高校“产学”接轨

    近日,CODING 与天津大学顺利达成合作,将通过 CODING 的一站式 DevOps 解决方案为天津大学师生提供软件研发管理方面的先进理念和产品. 根据中共中央.国务院印发的<中国教育现代化 ...

  8. Sublime操作

    快速搭建HTML模版:左下角的纯文本编程HTML语言,然后输出!(感叹号)或者html:5,再按Tab键. 快速创建html标签: div#top>(div.top-left>div.li ...

  9. 安装quickLook插件以及解决如何不能读取offic问题

    目录 @(安装quickLook插件) quickLook插件是Mac上的快速浏览的一个功能,现在win10系统上也能安装插件,这个插件可以快速浏览txt,doc,图片,表格等文件如下图: 我认为最方 ...

  10. [20190930]oracle raw类型转化number脚本.txt

    [20190930]oracle raw类型转化number脚本.txt --//写一个简单oracle raw转化number脚本,简单说明:--//输入必须是c1,02 或者 c102,不支持c1 ...