题目描述

有N个位置,M个操作。操作有两种,每次操作如果是:

  • 1 a b c:表示在第a个位置到第b个位置,每个位置加上一个数c
  • 2 a b c:表示询问从第a个位置到第b个位置,第C大的数是多少。

思路

  比较基础的整体二分。我们二分出$mid,对于值域[l,r]对应的操作[L,R]$,若为操作1,则考虑把$val>mid$的插入线段树中,表示比$mid$大的值的个数,若为操作2,先询问$[q[i].l,q[i].r]$中比$mid$大的值的个数,然后把当前询问填到左右区间再处理。讲的很简单,调过来整体二分原理的一些东西,,,毕竟这题还是比较板子的。

code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define I inline
#define smid (l+r>>1)
#define lch (now<<1)
#define rch (now<<1|1)
using namespace std;
const int N=;
typedef long long LL;
int n,m,tot;
LL ans[N];
struct segment
{
LL sum,pls;
}sgt[N<<];
struct node
{
int l,r,k,op,id;
}q[N<<],q1[N<<],q2[N<<]; I int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} I LL readll()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} I void pushup(int now)
{
sgt[now].sum=sgt[lch].sum+sgt[rch].sum;
} I void pushdown(int now,int l,int r)
{
if(!sgt[now].pls)return;
sgt[lch].pls+=sgt[now].pls;
sgt[rch].pls+=sgt[now].pls;
sgt[lch].sum+=(smid-l+)*sgt[now].pls;
sgt[rch].sum+=(r-smid)*sgt[now].pls;
sgt[now].pls=;
} I void modify(int now,int l,int r,int x,int y,int val)
{
if(x<=l&&r<=y)
{
sgt[now].pls+=val;
sgt[now].sum+=(r-l+)*val;
return;
}
pushdown(now,l,r);
if(x<=smid)modify(lch,l,smid,x,y,val);
if(smid<y)modify(rch,smid+,r,x,y,val);
pushup(now);
} I LL query(int now,int l,int r,int x,int y)
{
if(x<=l&&r<=y)return sgt[now].sum;
pushdown(now,l,r);
LL res=;
if(x<=smid)res+=query(lch,l,smid,x,y);
if(smid<y)res+=query(rch,smid+,r,x,y);
pushup(now);
return res;
} I void solve(int l,int r,int L,int R)
{
if(L>R)return;
if(l==r)
{
for(int i=L;i<=R;i++)if(q[i].op==)ans[q[i].id]=l;
return;
}
int mid=(l+r>>),cnt1=,cnt2=;
for(int i=L;i<=R;i++)
{
if(q[i].op==)
{
if(q[i].k>mid)
modify(,,n,q[i].l,q[i].r,),q2[++cnt2]=q[i];
else q1[++cnt1]=q[i];
}
else
{
LL tmp=query(,,n,q[i].l,q[i].r);
if(q[i].k>tmp)q[i].k-=tmp,q1[++cnt1]=q[i];
else q2[++cnt2]=q[i];
}
}
for(int i=;i<=cnt2;i++)if(q2[i].op==)modify(,,n,q2[i].l,q2[i].r,-);
for(int i=;i<=cnt1;i++)q[L+i-]=q1[i];
for(int i=;i<=cnt2;i++)q[L+cnt1+i-]=q2[i];
solve(l,mid,L,L+cnt1-);solve(mid+,r,L+cnt1,R);
} int main()
{
n=read();m=read();
for(int i=;i<=m;i++)
{
q[i].op=read();q[i].l=read();q[i].r=read();q[i].k=readll();
if(q[i].op==)q[i].id=++tot;
}
solve(-n,n,,m);
for(int i=;i<=tot;i++)printf("%lld\n",ans[i]);
}

[ZJOI2013]K大数查询——整体二分的更多相关文章

  1. P3332 [ZJOI2013]K大数查询 整体二分

    终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...

  2. BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]

    有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...

  3. BZOJ3110:[ZJOI2013]K大数查询(整体二分)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  4. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  5. BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分

    [题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...

  6. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  7. BZOJ3110:[ZJOI2013]K大数查询(整体二分版)

    浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html 题目传送门:https://lydsy.com/JudgeOnline/problem.p ...

  8. BZOJ 3110 [ZJOI2013]K大数查询 (整体二分+线段树)

    和dynamic rankings这道题的思想一样 只不过是把树状数组换成线段树区间修改,求第$K$大的而不是第$K$小的 这道题还有负数,需要离散 #include <vector> # ...

  9. 【BZOJ-3110】K大数查询 整体二分 + 线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6265  Solved: 2060[Submit][Sta ...

随机推荐

  1. .Net Core Serverless初体验

    什么是Serverless Serverless 是一个当今软件世界中比较新的话题.它并没有一个普遍公认的权威定义,每个人每个企业对它的解释可能都有不同,而 Serverless 正是在这种情况下不断 ...

  2. FreeRTOS优化与错误排查方法

    写在前面 主要是为刚接触 FreeRTOS 的用户指出那些新手通常容易遇到的问题.这里把最主要的篇幅放在栈溢出以及栈溢出j检测上,因为栈相关的问题是初学者遇到最多的问题. printf-stdarg. ...

  3. Js获取宽高度的归纳集锦总结

    首先,先吓唬一下我们的小白们!在js中的描述宽高的可以细分有22种.属性根据不同的兼容性也分为五种 window.innerWidth //除去菜单栏的窗口宽度,与浏览器相关 window.inner ...

  4. MOV与LEA

    MOV 格式:MOV dest, src 作用:赋值,且不改变标记位的值 特点:可以从寄存器到寄存器.从立即数到寄存器.从存储单元到寄存器.从立即数到储存单元.从寄存器到存储单元.从寄存器或存储单元到 ...

  5. [洛谷] 通往奥格瑞玛的道路 [Vijos]

    题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目描述 在艾泽拉斯, ...

  6. 利用 turtle库绘制简单图形

    turtle库是python的基础绘图库,这个库被介绍为一个最常用的用来介绍编程知识的方法库,其主要是用于程序设计入门,是标准库之一,利用turtle可以制作很多复杂的绘图. turtle名称含义为“ ...

  7. ZGC深入学习

    ZGC简介 本次调研目标选取的是jdk11(long-term support)下首次亮相的zgc. zgc介绍简单翻译了zgc main page:ZGC简介 另外参考hotspot garbage ...

  8. CH3801Rainbow的信号

    Description Freda发明了传呼机之后,rainbow进一步改进了传呼机发送信息所使用的信号.由于现在是数字.信息时代,rainbow发明的信号用N个自然数表示.为了避免两个人的对话被大坏 ...

  9. App元素定位

    1.元素定位(采用Appium-desktop自带的工具) 1.1将初始化参数复制进去校验json格式正确且保存后,点击start session 初始化参数来源如下: # 定义启动设备需要的参数 d ...

  10. PHP yield代替range生成范围内的数

    <?php function yieldRange($start, $limit, $step) { if ($start == $limit || $step == 0) { return $ ...