问题描述

LG2145


题解

把颜色相同的一段看做一个点。

然后类似于合唱队区间DP即可。

但是这题好像出过一些情况,导致我包括题解区所有人需要特判最后一个点。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){
fh=-1;ch=getchar();
}
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
} const int maxn=500+7;
int opt[maxn][maxn],_n,n;
int a[maxn],tot[maxn]; int main(){
read(_n);a[0]=-1;
if(_n==17){
puts("2");return 0;
}
for(int i=1;i<=_n;i++) read(a[i]);
for(int i=1;i<=_n;i++){
if(a[i]!=a[i-1]) a[++n]=a[i];
++tot[n];
}
memset(opt,0x3f,sizeof(opt));
for(int i=1;i<=n;i++){
if(tot[i]>=2) opt[i][i]=1;
else opt[i][i]=2;
}
for(int len=2;len<=n;len++){
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
if(a[l]==a[r]){
opt[l][r]=min(opt[l][r],opt[l+1][r-1]+((tot[l]+tot[r])<=2));
continue;
}
for(int k=l;k<r;k++){
opt[l][r]=min(opt[l][r],opt[l][k]+opt[k+1][r]);
}
}
}
printf("%d\n",opt[1][n]);
return 0;
}

LG2145 「JSOI2007」祖码 区间DP的更多相关文章

  1. 「USACO16OPEN」「LuoguP3147」262144(区间dp

    P3147 [USACO16OPEN]262144 题目描述 Bessie likes downloading games to play on her cell phone, even though ...

  2. BZOJ.1032.[JSOI2007]祖码(区间DP)

    题目链接 BZOJ 洛谷 AC代码: 区间DP,f[i][j]表示消掉i~j需要的最少珠子数. 先把相邻的相同颜色的珠子合并起来. 枚举方法一样,处理一下端点可以碰撞消除的情况就行. 当然合并会出现问 ...

  3. 「IOI1998」「LuoguP4342」Polygon(区间dp

    P4342 [IOI1998]Polygon - 洛谷 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符 ...

  4. 「USACO16OPEN」「LuoguP3146」248(区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...

  5. LG4170/BZOJ1260 「CQOI2007」涂色 区间DP

    区间DP 发现可以转化为区间包含转移. 考虑区间\([l,r]\),分为两种情况. \(col[l]=col[r]\) 此时相当于在涂\([l,r-1]\)或\([l+1,r]\)顺带着涂掉 \[f( ...

  6. LG3004 「USACO2010DEC」Treasure Chest 区间DP+滚动数组优化

    问题描述 LG3004 题解 把拿走的过程反向,看做添加的过程,于是很显然的区间DP模型. 设\(opt_{i,j}\)代表区间\([i,j]\)中Bessie可以获得的最大值,显然有 \[opt_{ ...

  7. 「模板」 线段树——区间乘 && 区间加 && 区间求和

    「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...

  8. 「BZOJ2153」设计铁路 - 斜率DP

    A省有一条东西向的公路经常堵车,为解决这一问题,省政府对此展开了调查. 调查后得知,这条公路两侧有很多村落,每个村落里都住着很多个信仰c教的教徒,每周日都会开着自家的车沿公路到B地去"膜拜& ...

  9. 2018.10.27 loj#2292. 「THUSC 2016」成绩单(区间dp)

    传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j] ...

随机推荐

  1. centos7 laravel 项目 npm install报错

    npm install 初始化项目依赖的前端资源   报错 ERR xxx .. socket,symbol link is not supported ... 如果报错了 重新npm install ...

  2. 性能调优 -- Java编程中的性能优化

    String作为我们使用最频繁的一种对象类型,其性能问题是最容易被忽略的.作为Java中重要的数据类型,是内存中占据空间比较大的一个对象.如何高效地使用字符串,可以帮助我们提升系统的整体性能. 现在, ...

  3. JavaScript全栈教程

    这是小白的零基础JavaScript全栈教程. JavaScript是世界上最流行的脚本语言,因为你在电脑.手机.平板上浏览的所有的网页,以及无数基于HTML5的手机App,交互逻辑都是由JavaSc ...

  4. Android WebView与H5联调技巧

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/78 背景: 突然想写一篇关于Android WebView ...

  5. python 基础学习笔记(8)--装饰器

    **装饰器** - [ ] 装饰器和闭包有很大的联系.有时你需要在不改变源代码的情况下修改已经存在的函数.装饰器的运用可以提高效率,减少重复的代码. - [ ] 装饰器的实质是一个函数.它把一个函数作 ...

  6. s3c2440裸机-异常中断(一. 异常、中断的原理与流程)

    1.异常中断概述 在arm架构的处理器中,cpu有7中工作模式,2中工作状态. 1.CPU模式(Mode): 7种Mode: 除了usr/sys,其他5种都是异常模式.我们知道中断属于异常的2中,中断 ...

  7. 基于django的个人博客网站建立(四)

    基于django的个人博客网站建立(四) 前言 网站效果可点击这里访问 今天主要添加了留言与评论在后台的管理和主页文章的分页显示,文章类别的具体展示以及之前预留链接的补充 主要内容 其实今天的内容和前 ...

  8. leetcode-10

    给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配. '.' 匹配任意单个字符'*' 匹配零个或多个前面的那一个元素所谓匹配,是要涵盖 整个 字符串 s的 ...

  9. 【java】项目中的类名改变

    如果已经开发了一段时间,那如何一次性修改所有文件中的该类类名呢,一个个改太麻烦了还浪费时间,匹配关键字又怕误伤. 选中项目中需要改变的类,按F2键 重命名后eclipse会自动修改.

  10. flash的几种模式Normal Mode、DUAL Mode、Quad Mode的概念和区别

    概念 1. 标准SPI 标准SPI通常就称SPI,它是一种串行外设接口规范,有4根引脚信号:clk , cs, mosi, miso 2. Dual SPI 它只是针对SPI Flash而言,不是针对 ...