CodeForces - 556D Case of Fugitive (贪心+排序)
Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water.
The only dry land there is an archipelago of n narrow islands located in a row. For more comfort let's represent them as non-intersecting segments on a straight line: island i has coordinates [li, ri], besides, ri < li + 1 for 1 ≤ i ≤ n - 1.
To reach the goal, Andrewid needs to place a bridge between each pair of adjacentislands. A bridge of length a can be placed between the i-th and the (i + 1)-th islads, if there are such coordinates of x and y, that li ≤ x ≤ ri, li + 1 ≤ y ≤ ri + 1and y - x = a.
The detective was supplied with m bridges, each bridge can be used at most once. Help him determine whether the bridges he got are enough to connect each pair of adjacent islands.
Input
The first line contains integers n (2 ≤ n ≤ 2·105) and m (1 ≤ m ≤ 2·105) — the number of islands and bridges.
Next n lines each contain two integers li and ri (1 ≤ li ≤ ri ≤ 1018) — the coordinates of the island endpoints.
The last line contains m integer numbers a1, a2, ..., am (1 ≤ ai ≤ 1018) — the lengths of the bridges that Andrewid got.
Output
If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes), otherwise print in the first line "Yes" (without the quotes), and in the second line print n - 1numbers b1, b2, ..., bn - 1, which mean that between islands i and i + 1 there must be used a bridge number bi.
If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in correct case.
Examples
4 4
1 4
7 8
9 10
12 14
4 5 3 8
Yes
2 3 1
2 2
11 14
17 18
2 9
No
2 1
1 1
1000000000000000000 1000000000000000000
999999999999999999
Yes
1
Note
In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14.
In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.
题目大意:
给你n-1个区间和m个点。问你能否从m个点中找出n-1个点,分别包含于n-1个区间中。如果能,输出Yes,并输出任何一种匹配结果;否则输出No。
贪心。
先将区间按其左端点排序,再将点按其坐标排序。
依次考察每个点,直至考察完所有点(1..m):
1、将所有左端点不大于该点的区间送入优先队列。区间右端点越小,优先级越高。
2、若队列非空,则pop。若区间右端点比该点小,则跳出循环(实际上已经可以输出No了,因为后面没有更小的点与该区间对应);若区间右端点不小于该点,则建立区间到这点的对应关系(贪心,因为右端点较大的区间更有可能匹配到较大的点)。
最后考察是否所有的区间都建立了到点的对应关系,是则输出Yes及对应关系;否则输出No。
排序(谈几点自己的理解,C++学完对运算符重载啥的了解后,再回来想一想)。
//结构体&数
//优先队列用结构体:struct cmp & greater/less<int>
//排序用函数:int cmp() & int cmp()
//如果只涉及一种偏序关系,不必太在意,也可以在结构体内部写,如果涉及偏序关系较多,最好拿出来写清楚
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm> typedef long long lol; using namespace std; const int maxn=; struct tnode
{
lol mmin;
lol mmax;
int seq;
};
tnode node[maxn+];//1..n-1的区间 struct tlen
{
lol lenth;
int seq;
};
tlen len[maxn+];//1..m的桥长 int cmp1(tnode a,tnode b)
{
return a.mmin<b.mmin;
} int cmp2(tlen a,tlen b)
{
return a.lenth<b.lenth;
} struct cmp3
{
bool operator()(const int a,const int b)
{
return node[a].mmax>node[b].mmax;
}
}; int bridge[maxn+];//i区间对应的桥 int main()
{
int n,m;
scanf("%d%d",&n,&m); lol l0,r0,l,r;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&l,&r);
if(i>=)
{
node[i-].mmin=l-r0;
node[i-].mmax=r-l0;
node[i-].seq=i-;
}
l0=l;
r0=r;
}
for(int i=;i<=m;i++)
{
scanf("%lld",len+i);
len[i].seq=i;
} sort(node+,node+n,cmp1);
sort(len+,len+m+,cmp2); priority_queue<int,vector<int>,cmp3> q;
memset(bridge,,sizeof(bridge));
for(int i=,j=;i<=m;i++)
{
for(;j<=n-&&node[j].mmin<=len[i].lenth;j++)
q.push(j);
bool flag=true;
if(!q.empty())
{ int tmp=q.top();q.pop();
if(node[tmp].mmax<len[i].lenth)
flag=false;
else
bridge[node[tmp].seq]=len[i].seq;
}
if(!flag)
break;
} bool flag=true;
for(int i=;i<=n-;i++)
if(bridge[i]==)
{
flag=false;
break;
}
if(flag)
{
printf("Yes\n");
for(int i=;i<=n-;i++)
{
if(i<n-)
printf("%d ",bridge[i]);
else
printf("%d\n",bridge[i]);
}
}
else
printf("No\n"); return ;
}
CodeForces - 556D Case of Fugitive (贪心+排序)的更多相关文章
- Codeforces 556D - Case of Fugitive
556D - Case of Fugitive 思路:将桥长度放进二叉搜索树中(multiset),相邻两岛距离按上限排序,然后二分查找桥长度匹配并删除. 代码: #include<bits/s ...
- codeforces 555B Case of Fugitive
题目连接: http://codeforces.com/problemset/problem/555/B 题目大意: 有n个岛屿(岛屿在一列上,可以看做是线性的,用来描述岛屿位置的是起点与终点),m个 ...
- codeforces 555b//Case of Fugitive// Codeforces Round #310(Div. 1)
题意:有n-1个缝隙,在上面搭桥,每个缝隙有个ll,rr值,ll<=长度<=rr的才能搭上去.求一种搭桥组合. 经典问题,应列入acm必背300题中.属于那种不可能自己想得出来的题.将二元 ...
- Codeforces Round #310 (Div. 1) B. Case of Fugitive set
B. Case of Fugitive Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/555/p ...
- Codeforces 555 B. Case of Fugitive
\(>Codeforces \space 555 B. Case of Fugitive<\) 题目大意 : 有 \(n\) 个岛屿有序排列在一条线上,第 \(i\) 个岛屿的左端点为 \ ...
- Codeforces Round #310 (Div. 1) B. Case of Fugitive(set二分)
B. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- CodeForces - 556D
D. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- codeforces Gym 100338E Numbers (贪心,实现)
题目:http://codeforces.com/gym/100338/attachments 贪心,每次枚举10的i次幂,除k后取余数r在用k-r补在10的幂上作为候选答案. #include< ...
- [Codeforces 1214A]Optimal Currency Exchange(贪心)
[Codeforces 1214A]Optimal Currency Exchange(贪心) 题面 题面较长,略 分析 这个A题稍微有点思维难度,比赛的时候被孙了一下 贪心的思路是,我们换面值越小的 ...
随机推荐
- Centos下安装PHP ldap扩展
Centos下安装PHP ldap扩展,有两种方法,仅供参考. 一.在线安装 执行下面命令: 1 yum install PHP-ldap 可能出现的问题: Error: php70w-common- ...
- python3 之 字符串编码小结(Unicode、utf-8、gbk、gb2312等)
python3 解释器默认编码为Unicode,由str类型进行表示.二进制数据使用byte类型表示. 字符串通过编码转换成字节串,字节码通过解码成为字符串. encode:str-->byte ...
- 高德JS依赖分析工程及关键原理
一.背景 高德 App 进行 Bundle 化后,由于业务的复杂性,Bundle 的数量非常多.而这带来了一个新的问题——Bundle 之间的依赖关系错综复杂,需要进行管控,使 Bundle 之间的依 ...
- 简单聊一聊spring cloud stream和kafka的那点事
Spring Cloud Stream is a framework for building highly scalable event-driven microservices connected ...
- MySQL5.6.36 自动化安装脚本
背景 很好的朋友邱启明同学,擅长MySQL,目前任职某大型互联网业MySQL DBA,要来一套MySQL自动安装的Shell脚本,贴出来保存一些. 此版本为 MySQL 5.6.365 ###### ...
- Djangoday2第二个app加减法
第二个app 计算新建一个app在view定义显示的内容修改urls指定连接对应的视图测试另一种通过路径传参的方式访问网址路径传参的urls定义方法网址路径传参测试urls的urlnamedjango ...
- flask-简介
什么是flask? Flask简介: Flask是一个Python编写的Web 微框架,让我们可以使用Python语言快速实现一个网站或Web服务,在介绍Flask之前首先来聊下它和Django的联系 ...
- 【github repo自荐】码农周刊一周精选分类
以下内容节选自我的github码农周刊整理repo,欢迎大家star. 写在最前面的话 作为最初的一批码农周刊的订阅者,不能说经历了其成长,但是确实见证了他的壮大.码农周刊确实从开始第一期的基本上都是 ...
- elastic search(es)安装
全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选. 它可以快速地储存.搜索和分析海量数据.维基百科.Stack Overflow.Gi ...
- 【并发编程】ThreadLocal的兄弟InheritableThreadLocal
本博客系列是学习并发编程过程中的记录总结.由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅. 并发编程系列博客传送门 引子 public class InheritableT ...