Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water.

The only dry land there is an archipelago of n narrow islands located in a row. For more comfort let's represent them as non-intersecting segments on a straight line: island i has coordinates [li, ri], besides, ri < li + 1 for 1 ≤ i ≤ n - 1.

To reach the goal, Andrewid needs to place a bridge between each pair of adjacentislands. A bridge of length a can be placed between the i-th and the (i + 1)-th islads, if there are such coordinates of x and y, that li ≤ x ≤ rili + 1 ≤ y ≤ ri + 1and y - x = a.

The detective was supplied with m bridges, each bridge can be used at most once. Help him determine whether the bridges he got are enough to connect each pair of adjacent islands.

Input

The first line contains integers n (2 ≤ n ≤ 2·105) and m (1 ≤ m ≤ 2·105) — the number of islands and bridges.

Next n lines each contain two integers li and ri (1 ≤ li ≤ ri ≤ 1018) — the coordinates of the island endpoints.

The last line contains m integer numbers a1, a2, ..., am (1 ≤ ai ≤ 1018) — the lengths of the bridges that Andrewid got.

Output

If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes), otherwise print in the first line "Yes" (without the quotes), and in the second line print n - 1numbers b1, b2, ..., bn - 1, which mean that between islands i and i + 1 there must be used a bridge number bi.

If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in correct case.

Examples

Input
4 4
1 4
7 8
9 10
12 14
4 5 3 8
Output
Yes
2 3 1
Input
2 2
11 14
17 18
2 9
Output
No
Input
2 1
1 1
1000000000000000000 1000000000000000000
999999999999999999
Output
Yes
1

Note

In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14.

In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.

题目大意:

给你n-1个区间和m个点。问你能否从m个点中找出n-1个点,分别包含于n-1个区间中。如果能,输出Yes,并输出任何一种匹配结果;否则输出No。

贪心。

先将区间按其左端点排序,再将点按其坐标排序。

依次考察每个点,直至考察完所有点(1..m):

1、将所有左端点不大于该点的区间送入优先队列。区间右端点越小,优先级越高。

2、若队列非空,则pop。若区间右端点比该点小,则跳出循环(实际上已经可以输出No了,因为后面没有更小的点与该区间对应);若区间右端点不小于该点,则建立区间到这点的对应关系(贪心,因为右端点较大的区间更有可能匹配到较大的点)。

最后考察是否所有的区间都建立了到点的对应关系,是则输出Yes及对应关系;否则输出No。

排序(谈几点自己的理解,C++学完对运算符重载啥的了解后,再回来想一想)。

//结构体&数

//优先队列用结构体:struct cmp & greater/less<int>

//排序用函数:int cmp() & int cmp()

//如果只涉及一种偏序关系,不必太在意,也可以在结构体内部写,如果涉及偏序关系较多,最好拿出来写清楚

#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm> typedef long long lol; using namespace std; const int maxn=; struct tnode
{
lol mmin;
lol mmax;
int seq;
};
tnode node[maxn+];//1..n-1的区间 struct tlen
{
lol lenth;
int seq;
};
tlen len[maxn+];//1..m的桥长 int cmp1(tnode a,tnode b)
{
return a.mmin<b.mmin;
} int cmp2(tlen a,tlen b)
{
return a.lenth<b.lenth;
} struct cmp3
{
bool operator()(const int a,const int b)
{
return node[a].mmax>node[b].mmax;
}
}; int bridge[maxn+];//i区间对应的桥 int main()
{
int n,m;
scanf("%d%d",&n,&m); lol l0,r0,l,r;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&l,&r);
if(i>=)
{
node[i-].mmin=l-r0;
node[i-].mmax=r-l0;
node[i-].seq=i-;
}
l0=l;
r0=r;
}
for(int i=;i<=m;i++)
{
scanf("%lld",len+i);
len[i].seq=i;
} sort(node+,node+n,cmp1);
sort(len+,len+m+,cmp2); priority_queue<int,vector<int>,cmp3> q;
memset(bridge,,sizeof(bridge));
for(int i=,j=;i<=m;i++)
{
for(;j<=n-&&node[j].mmin<=len[i].lenth;j++)
q.push(j);
bool flag=true;
if(!q.empty())
{ int tmp=q.top();q.pop();
if(node[tmp].mmax<len[i].lenth)
flag=false;
else
bridge[node[tmp].seq]=len[i].seq;
}
if(!flag)
break;
} bool flag=true;
for(int i=;i<=n-;i++)
if(bridge[i]==)
{
flag=false;
break;
}
if(flag)
{
printf("Yes\n");
for(int i=;i<=n-;i++)
{
if(i<n-)
printf("%d ",bridge[i]);
else
printf("%d\n",bridge[i]);
}
}
else
printf("No\n"); return ;
}

CodeForces - 556D Case of Fugitive (贪心+排序)的更多相关文章

  1. Codeforces 556D - Case of Fugitive

    556D - Case of Fugitive 思路:将桥长度放进二叉搜索树中(multiset),相邻两岛距离按上限排序,然后二分查找桥长度匹配并删除. 代码: #include<bits/s ...

  2. codeforces 555B Case of Fugitive

    题目连接: http://codeforces.com/problemset/problem/555/B 题目大意: 有n个岛屿(岛屿在一列上,可以看做是线性的,用来描述岛屿位置的是起点与终点),m个 ...

  3. codeforces 555b//Case of Fugitive// Codeforces Round #310(Div. 1)

    题意:有n-1个缝隙,在上面搭桥,每个缝隙有个ll,rr值,ll<=长度<=rr的才能搭上去.求一种搭桥组合. 经典问题,应列入acm必背300题中.属于那种不可能自己想得出来的题.将二元 ...

  4. Codeforces Round #310 (Div. 1) B. Case of Fugitive set

    B. Case of Fugitive Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/555/p ...

  5. Codeforces 555 B. Case of Fugitive

    \(>Codeforces \space 555 B. Case of Fugitive<\) 题目大意 : 有 \(n\) 个岛屿有序排列在一条线上,第 \(i\) 个岛屿的左端点为 \ ...

  6. Codeforces Round #310 (Div. 1) B. Case of Fugitive(set二分)

    B. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  7. CodeForces - 556D

    D. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  8. codeforces Gym 100338E Numbers (贪心,实现)

    题目:http://codeforces.com/gym/100338/attachments 贪心,每次枚举10的i次幂,除k后取余数r在用k-r补在10的幂上作为候选答案. #include< ...

  9. [Codeforces 1214A]Optimal Currency Exchange(贪心)

    [Codeforces 1214A]Optimal Currency Exchange(贪心) 题面 题面较长,略 分析 这个A题稍微有点思维难度,比赛的时候被孙了一下 贪心的思路是,我们换面值越小的 ...

随机推荐

  1. node读取excel文件生成JSON

    当前的目录结构 excel的数据如下: node识别excel,先得安装  node-xlsx,用npm或yarn都可以 npm install  node-xlsx 或 yarn add node- ...

  2. Redis Geo HyperLogLog类型介绍

    ​Geo类型 Redis3.2.0版本推出 可以将用户给定的地理位置信息存储起来,并对这些信息进行操作 GEOADD key longitude latitude member [longitude ...

  3. GeoServer 安装教程

    准备内容 安装环境:win10*64位专业版 安装文件:geoserver-2.15.2 安装步骤 安装JDK 1.安装GeoServer是基于Java的环境,所以需要先装Jdk环境. 2.前往官网下 ...

  4. jquery ajax提交数据给后端

    大家好,今天铁柱兄给大家带一段jquery ajax提交数据给后端的教学. 初学javaweb的同学前端提交数据基本上都是用form表单提交,这玩意儿反正我是觉得不太好玩.而JavaScript aj ...

  5. Kotlin实战案例:带你实现RecyclerView分页查询功能(仿照主流电商APP,可切换列表和网格效果)

    随着Kotlin的推广,一些国内公司的安卓项目开发,已经从Java完全切成Kotlin了.虽然Kotlin在各类编程语言中的排名比较靠后(据TIOBE发布了 19 年 8 月份的编程语言排行榜,Kot ...

  6. Gzip,BZip2,Lzo,Snappy总结

    gzip,bzip2,lzo,snappy是hadoop中比较常见的文件压缩格式,可以节省很多硬盘存储,以下是Gzip , BZip2 , Lzo Snappy 四种方式的优缺点 和使用场景 Gzip ...

  7. Select2 禁用option

    禁用 $("#priceGroupType option[value='1']").prop('disabled', true); $("#priceGroupType& ...

  8. 从spring boot发邮件聊到开发的友好性

    前些天帮一个朋友做网站,全站都是静态页面,唯一需要用到后端开发的是他需要一个留言板.传统的留言板一般都是提交后保存到数据库,然后提供一个后台的留言列表给管理人员看,我嫌麻烦,就决定留言提交到后台直接发 ...

  9. 将String类型转换为int整数类型

    示例如下: public class demo { public static void main(String[] args) { String s="10"; 6 7 //St ...

  10. html代码/如何做到有横线无竖线的表格/或横线有颜色/竖线没颜色

    改变它的css样式,table{ border-collapse:collapse;}table tr td{ border-bottom:1px solid #dedede;}