CodeForces - 556D Case of Fugitive (贪心+排序)
Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water.
The only dry land there is an archipelago of n narrow islands located in a row. For more comfort let's represent them as non-intersecting segments on a straight line: island i has coordinates [li, ri], besides, ri < li + 1 for 1 ≤ i ≤ n - 1.
To reach the goal, Andrewid needs to place a bridge between each pair of adjacentislands. A bridge of length a can be placed between the i-th and the (i + 1)-th islads, if there are such coordinates of x and y, that li ≤ x ≤ ri, li + 1 ≤ y ≤ ri + 1and y - x = a.
The detective was supplied with m bridges, each bridge can be used at most once. Help him determine whether the bridges he got are enough to connect each pair of adjacent islands.
Input
The first line contains integers n (2 ≤ n ≤ 2·105) and m (1 ≤ m ≤ 2·105) — the number of islands and bridges.
Next n lines each contain two integers li and ri (1 ≤ li ≤ ri ≤ 1018) — the coordinates of the island endpoints.
The last line contains m integer numbers a1, a2, ..., am (1 ≤ ai ≤ 1018) — the lengths of the bridges that Andrewid got.
Output
If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes), otherwise print in the first line "Yes" (without the quotes), and in the second line print n - 1numbers b1, b2, ..., bn - 1, which mean that between islands i and i + 1 there must be used a bridge number bi.
If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in correct case.
Examples
4 4
1 4
7 8
9 10
12 14
4 5 3 8
Yes
2 3 1
2 2
11 14
17 18
2 9
No
2 1
1 1
1000000000000000000 1000000000000000000
999999999999999999
Yes
1
Note
In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14.
In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.
题目大意:
给你n-1个区间和m个点。问你能否从m个点中找出n-1个点,分别包含于n-1个区间中。如果能,输出Yes,并输出任何一种匹配结果;否则输出No。
贪心。
先将区间按其左端点排序,再将点按其坐标排序。
依次考察每个点,直至考察完所有点(1..m):
1、将所有左端点不大于该点的区间送入优先队列。区间右端点越小,优先级越高。
2、若队列非空,则pop。若区间右端点比该点小,则跳出循环(实际上已经可以输出No了,因为后面没有更小的点与该区间对应);若区间右端点不小于该点,则建立区间到这点的对应关系(贪心,因为右端点较大的区间更有可能匹配到较大的点)。
最后考察是否所有的区间都建立了到点的对应关系,是则输出Yes及对应关系;否则输出No。
排序(谈几点自己的理解,C++学完对运算符重载啥的了解后,再回来想一想)。
//结构体&数
//优先队列用结构体:struct cmp & greater/less<int>
//排序用函数:int cmp() & int cmp()
//如果只涉及一种偏序关系,不必太在意,也可以在结构体内部写,如果涉及偏序关系较多,最好拿出来写清楚
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm> typedef long long lol; using namespace std; const int maxn=; struct tnode
{
lol mmin;
lol mmax;
int seq;
};
tnode node[maxn+];//1..n-1的区间 struct tlen
{
lol lenth;
int seq;
};
tlen len[maxn+];//1..m的桥长 int cmp1(tnode a,tnode b)
{
return a.mmin<b.mmin;
} int cmp2(tlen a,tlen b)
{
return a.lenth<b.lenth;
} struct cmp3
{
bool operator()(const int a,const int b)
{
return node[a].mmax>node[b].mmax;
}
}; int bridge[maxn+];//i区间对应的桥 int main()
{
int n,m;
scanf("%d%d",&n,&m); lol l0,r0,l,r;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&l,&r);
if(i>=)
{
node[i-].mmin=l-r0;
node[i-].mmax=r-l0;
node[i-].seq=i-;
}
l0=l;
r0=r;
}
for(int i=;i<=m;i++)
{
scanf("%lld",len+i);
len[i].seq=i;
} sort(node+,node+n,cmp1);
sort(len+,len+m+,cmp2); priority_queue<int,vector<int>,cmp3> q;
memset(bridge,,sizeof(bridge));
for(int i=,j=;i<=m;i++)
{
for(;j<=n-&&node[j].mmin<=len[i].lenth;j++)
q.push(j);
bool flag=true;
if(!q.empty())
{ int tmp=q.top();q.pop();
if(node[tmp].mmax<len[i].lenth)
flag=false;
else
bridge[node[tmp].seq]=len[i].seq;
}
if(!flag)
break;
} bool flag=true;
for(int i=;i<=n-;i++)
if(bridge[i]==)
{
flag=false;
break;
}
if(flag)
{
printf("Yes\n");
for(int i=;i<=n-;i++)
{
if(i<n-)
printf("%d ",bridge[i]);
else
printf("%d\n",bridge[i]);
}
}
else
printf("No\n"); return ;
}
CodeForces - 556D Case of Fugitive (贪心+排序)的更多相关文章
- Codeforces 556D - Case of Fugitive
556D - Case of Fugitive 思路:将桥长度放进二叉搜索树中(multiset),相邻两岛距离按上限排序,然后二分查找桥长度匹配并删除. 代码: #include<bits/s ...
- codeforces 555B Case of Fugitive
题目连接: http://codeforces.com/problemset/problem/555/B 题目大意: 有n个岛屿(岛屿在一列上,可以看做是线性的,用来描述岛屿位置的是起点与终点),m个 ...
- codeforces 555b//Case of Fugitive// Codeforces Round #310(Div. 1)
题意:有n-1个缝隙,在上面搭桥,每个缝隙有个ll,rr值,ll<=长度<=rr的才能搭上去.求一种搭桥组合. 经典问题,应列入acm必背300题中.属于那种不可能自己想得出来的题.将二元 ...
- Codeforces Round #310 (Div. 1) B. Case of Fugitive set
B. Case of Fugitive Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/555/p ...
- Codeforces 555 B. Case of Fugitive
\(>Codeforces \space 555 B. Case of Fugitive<\) 题目大意 : 有 \(n\) 个岛屿有序排列在一条线上,第 \(i\) 个岛屿的左端点为 \ ...
- Codeforces Round #310 (Div. 1) B. Case of Fugitive(set二分)
B. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- CodeForces - 556D
D. Case of Fugitive time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- codeforces Gym 100338E Numbers (贪心,实现)
题目:http://codeforces.com/gym/100338/attachments 贪心,每次枚举10的i次幂,除k后取余数r在用k-r补在10的幂上作为候选答案. #include< ...
- [Codeforces 1214A]Optimal Currency Exchange(贪心)
[Codeforces 1214A]Optimal Currency Exchange(贪心) 题面 题面较长,略 分析 这个A题稍微有点思维难度,比赛的时候被孙了一下 贪心的思路是,我们换面值越小的 ...
随机推荐
- C#控制打印机通过不同纸盒/进纸口进纸打印
通常我们是通过程序操作打印机打印我们设置好的内容,但基本都是打印机默认进纸口打印:最近有一个通过C#程序控制两个进纸口分别进一张纸进行打印的需求,通过偿失找到了解决方案如下: 关于C#调用打印机打印的 ...
- href=”javascript:void(0);
href=”javascript:void(0);”这个的含义是,让超链接去执行一个js函数,而不是去跳转到一个地址,而void(0)表示一个空的方法,也就是不执行js函数. 为什么要使用href=” ...
- 理解Redis的反应堆模式
1. Redis的网络模型 Redis基于Reactor模式(反应堆模式)开发了自己的网络模型,形成了一个完备的基于IO复用的事件驱动服务器,但是不由得浮现几个问题: 为什么要使用Reactor模式呢 ...
- element 根据某一个属性合并列
通过 span-method 绑定方法 objectSpanMethod方法 this.getSpanArr(this.tableData); //this.tableData 指接口取到的数据 // ...
- python3基础之 字符串切片
一.python3中,可迭代对象有:列表.元组.字典.字符串:常结合for循环使用:均可使用索引切片 实例: str = ' #str[start:stop:step] 遵循[左闭右开]规则 prin ...
- 《VueRouter爬坑第三篇》-嵌套路由
VueRouter系列的文章示例编写时,项目是使用vue-cli脚手架搭建. 项目搭建的步骤和项目目录专门写了一篇文章:点击这里进行传送 后续VueRouter系列的文章的示例编写均基于该项目环境. ...
- phpstorm2019激活码
6ZUMD7WWWU-eyJsaWNlbnNlSWQiOiI2WlVNRDdXV1dVIiwibGljZW5zZWVOYW1lIjoiSmV0cyBHcm91cCIsImFzc2lnbmVlTmFtZ ...
- 依赖注入利器 - Dagger ‡
转载请标明出处:http://blog.csdn.net/shensky711/article/details/53715960 本文出自: [HansChen的博客] 概述 声明需要注入的对象 如何 ...
- java中的基本数据类型转换
Java 中的 8 种基本数据类型,以及它们的占内存的容量大小和表示的范围,如下图所示: 重新温故了下原始数据类型,现在来解释下它们之间的转换关系. 自动类型转换 自动类型转换是指:数字表示范围小的数 ...
- css5-盒子模型
HTML<!DOCTYPE html><html lang="en"><head> <link rel="stylesheet& ...