poj 1182 食物链(种类并查集 ‘初心者’)
题目链接:http://poj.org/problem?id=1182
借着这题可以好好理解一下种类并查集,这题比较简单但挺经典的。
题意就不解释了,中问题。
关于种类并查集结局方法也是挺多的
1扩增倍数。
就是有几种关系就建立几倍数组,具体方法在这里不详细说了,这种方法有弊端
比较复杂而且内存消耗比较大如果关系比较多就容易爆掉。
2向量的方法。
这种方法要详细解说一下。这个方法好处都有啥.......(自行脑补后面的话)
这个方法的优点占用内存比较小而且比较简洁。只要找到关系就行。
下面就用方法2来说一下这道题目
这题总共有3种关系
1)同类。2)A eat B。3)B eat A。
所以就设root[i],等于1表示同类,等于2表示关系2,等于3表示关系3
初始化是将root的值全定义为0表示他们毫不相关,然后再慢慢将关系加入进去
int find(int x) {
if(x == f[x])
return x;
int t = find(f[x]);
root[x] = (root[x] + root[f[x]]) % 3;//这个注意一下在寻找根节点的过程中要记得更新一下root的值。
f[x] = t;
return f[x];
}//寻找根节点
int a = find(x) , b = find(y);
if(d == 1) {
if(a == b) {
if(root[x] != root[y])//这个很好理解就不解释了
count++;
}
else {
f[a] = b;
root[a] = root[y] - root[x];//root[a]+root[x]=root[y] 这样就好理解了吧
root[a] = (root[a] + 3) % 3;
}
}
if(d == 2) {
if(a == b) {
if((root[x] + 1) % 3 != root[y])//这个也很好理解就是A->B or B->C or C->A他们的root关系就差1
count++;
}
else {
f[a] = b;
root[a] = root[y] - root[x] - 1;//root[a]+root[x] +1 = root[y];
root[a] = (root[a] + 3) % 3;
}
}
//这些都是关键代码
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int M = 5e4 + 10;
int n , k , root[M] , f[M];
void init() {
for(int i = 1 ; i <= n ; i++) {
f[i] = i , root[i] = 0;
}
}
int find(int x) {
if(x == f[x])
return x;
int t = find(f[x]);
root[x] = (root[x] + root[f[x]]) % 3;
f[x] = t;
return f[x];
}
int main() {
int d , x , y;
scanf("%d%d" , &n , &k);
int count = 0;
init();
while(k--) {
scanf("%d%d%d" , &d , &x , &y);
if(x > n || y > n) {
count++;
continue;
}
int a = find(x) , b = find(y);
if(d == 1) {
if(a == b) {
if(root[x] != root[y])
count++;
}
else {
f[a] = b;
root[a] = root[y] - root[x];
root[a] = (root[a] + 3) % 3;
}
}
if(d == 2) {
if(a == b) {
if((root[x] + 1) % 3 != root[y])
count++;
}
else {
f[a] = b;
root[a] = root[y] - root[x] - 1;
root[a] = (root[a] + 3) % 3;
}
}
}
printf("%d\n" , count);
return 0;
}
poj 1182 食物链(种类并查集 ‘初心者’)的更多相关文章
- POJ 1182 食物链(种类并查集)
记得第一次做这道题的时候,推关系感觉有点复杂,而且写完代码后一直WA,始终找不出错误. 在A了十几道并查集后,再做这道题,发现太小儿科了.发现原来之所以WA,就在于查找根节点时,没有同步更新子节点相对 ...
- poj 1182 食物链 (并查集)
http://poj.org/problem?id=1182 关于并查集 很好的一道题,开始也看了一直没懂.这次是因为<挑战程序设计竞赛>书上有讲解看了几遍终于懂了.是一种很好的思路,跟网 ...
- POJ 1182 食物链(并查集拆点)
[题目链接] http://poj.org/problem?id=1182 [题目大意] 草原上有三种物种,分别为A,B,C A吃B,B吃C,C吃A. 1 x y表示x和y是同类,2 x y表示x吃y ...
- POJ 1182 食物链(并查集+偏移向量)题解
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 82346 Accepted: 24616 Description ...
- POJ 1182 食物链 (并查集解法)(详细注释)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 78510 Accepted: 23396 Description ...
- 【POJ 1182 食物链】并查集
此题按照<挑战程序设计竞赛(第2版)>P89的解法,不容易想到,但想清楚了代码还是比较直观的. 并查集模板(包含了记录高度的rank数组和查询时状态压缩) *; int par[MAX_N ...
- 食物链 POJ 1182(种类并查集)
Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到 ...
- POJ 1182 食物链 【并查集】
解题思路:首先是没有思路的----然后看了几篇解题报告 http://blog.csdn.net/ditian1027/article/details/20804911 http://poj.org/ ...
- POJ 1182 食物链 经典并查集+关系向量简单介绍
题目: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有 ...
- poj 1182食物链(并查集)
算法思路:把那些确定了相对关系的节点放在同一棵树里(可以同时存在多棵树,单独每棵树中节点的相对关系确定),每个节点对应的 v[] 值记录他与根节点的关系( 0:同类: 1:根吃他: 2:他吃根 ).当 ...
随机推荐
- ubuntu 下常用的mysql 命令
一.mysql服务操作 0.查看数据库版本 sql-> status; 1.net start mysql //启动mysql服务 2.net stop mysql //停止mysql服务 ...
- MOCTF-WEB-writeup
MOCTF-WEB-writeup 好菜,除了简单的几个题,自己会做,难的都是看老大WP完成的,太菜了 啥姿势都不会,就此记录一下,供日后查看及反省.菜鸡的自我修养 0x01 一道水题 题目链接:ht ...
- 中间件增强框架之-CaptureFramework框架
一.背景 应用服务监控是智能运维系统的重要组成部分.在UAV系统中,中间件增强框架(MOF)探针提供了应用画像及性能数据收集等功能,其中数据收集功能主要采集四类数据:实时数据.画像数据.调用链接数据生 ...
- python3 编译安装
前言: Linux下大部分系统默认自带python2.x的版本,最常见的是python2.6或python2.7版本,默认的python被系统很多程序所依赖,比如centos下的yum就是python ...
- css实现左边高度自适应右边高度
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 对Java中HashCode方法的深入思考
前言 最近在学习 Go 语言,Go 语言中有指针对象,一个指针变量指向了一个值的内存地址.学习过 C 语言的猿友应该都知道指针的概念.Go 语言语法与 C 相近,可以说是类 C 的编程语言,所以 Go ...
- springmvc原理详解(手写springmvc)
最近在复习框架 在快看小说网搜了写资料 和原理 今天总结一下 希望能加深点映像 不足之处请大家指出 我就不画流程图了 直接通过代码来了解springmvc的运行机制和原理 回想用springmvc用 ...
- Appium+python自动化(三十二)- 代码写死一时爽,框架重构火葬场 - PageObject+unittest(超详解)
简介 江湖有言:”代码写死一时爽,框架重构火葬场“,更有人戏言:”代码动态一时爽,一直动态一直爽
- 【hdu 2544最短路】【Dijkstra算法模板题】
Dijkstra算法 分析 Dijkstra算法适用于边权为正的情况.它可用于计算正权图上的单源最短路( Single-Source Shortest Paths, SSSP) , 即从单个源点出发, ...
- Android使用WebView开发常见的坑
原文链接:http://mp.weixin.qq.com/s?__biz=MzAwODE1NTI2MQ==&tempkey=uP3a%2BOgIN7vPbLfJp3BTCl2KabYi1%2F ...