目的:

初步感受一下hadoop mapreduce

环境:

hadoop 2.6.4

1 准备输入文件

paper.txt 内容一般为英文文章,随便弄点什么进去
hadoop@ssmaster:~$ hadoop fs -mkdir /input
hadoop@ssmaster:~$ ls
Desktop Documents Downloads examples.desktop hadoop-2.6..tar.gz Music paper.txt Pictures Public Templates Videos
hadoop@ssmaster:~$ hadoop fs -put paper.txt /input
hadoop@ssmaster:~$ hadoop fs -ls /input
Found items
-rw-r--r-- hadoop supergroup -- : /input/paper.txt

注意:输出目录/output 不用提前创建,程序会自动做这一步

2  执行

hadoop@ssmaster:~$ hadoop jar /opt/hadoop-2.6./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6..jar  wordcount /input /output
// :: INFO client.RMProxy: Connecting to ResourceManager at ssmaster/192.168.249.144:
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1477208120905_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1477208120905_0001
// :: INFO mapreduce.Job: The url to track the job: http://ssmaster:8088/proxy/application_1477208120905_0001/
// :: INFO mapreduce.Job: Running job: job_1477208120905_0001
// :: INFO mapreduce.Job: Job job_1477208120905_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %

6/10/23 00:51:38 INFO mapreduce.Job: map 0% reduce 0%
16/10/23 00:52:17 INFO mapreduce.Job: map 100% reduce 0%
16/10/23 00:52:39 INFO mapreduce.Job: map 100% reduce 100%
16/10/23 00:52:41 INFO mapreduce.Job: Job job_1477208120905_0001 completed successfully
16/10/23 00:52:41 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=2061
FILE: Number of bytes written=217797
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1863
HDFS: Number of bytes written=1425
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=35792
Total time spent by all reduces in occupied slots (ms)=18540
Total time spent by all map tasks (ms)=35792
Total time spent by all reduce tasks (ms)=18540
Total vcore-milliseconds taken by all map tasks=35792
Total vcore-milliseconds taken by all reduce tasks=18540
Total megabyte-milliseconds taken by all map tasks=36651008
Total megabyte-milliseconds taken by all reduce tasks=18984960
Map-Reduce Framework
Map input records=11
Map output records=303
Map output bytes=2969
Map output materialized bytes=2061
Input split bytes=101
Combine input records=303
Combine output records=158
Reduce input groups=158
Reduce shuffle bytes=2061
Reduce input records=158
Reduce output records=158
Spilled Records=316
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=1093
CPU time spent (ms)=5550
Physical memory (bytes) snapshot=442781696
Virtual memory (bytes) snapshot=1448112128
Total committed heap usage (bytes)=276299776
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1762
File Output Format Counters
Bytes Written=1425

可以从Web监控页面查看执行状态

http://ssmaster:8088/cluster

Cluster Metrics

Apps Submitted Apps Pending Apps Running Apps Completed Containers Running Memory Used Memory Total Memory Reserved VCores Used VCores Total VCores Reserved Active Nodes Decommissioned Nodes Lost Nodes Unhealthy Nodes Rebooted Nodes
1 0 1 0 2 3 GB 8 GB 0 B 2 8 0 1 0 0 0 0
Show 
20
40
60
80
100

entries

Search: 
 
ID
User
Name
Application Type
Queue
StartTime
FinishTime
State
FinalStatus
Progress
Tracking UI
Blacklisted Nodes
application_1477208120905_0001 hadoop word count MAPREDUCE default Sun, 23 Oct 2016 07:51:13 GMT N/A RUNNING UNDEFINED   ApplicationMaster 0

3 查看输出结果

hadoop@ssmaster:~$ hadoop fs -ls /output
Found items
-rw-r--r-- hadoop supergroup -- : /output/_SUCCESS
-rw-r--r-- hadoop supergroup -- : /output/part-r-
hadoop@ssmaster:~$ hadoop fs -cat /output/part-r-
Always
Dream
There
a
all
along
always
...........
...........

Q 总结

非常简单,没什么感觉。

后续:

  • 自己编写mapreduce wordcount 程序
  • 搭建一个纯分布式,同样的程序处理一个大文件,观察一下速度

[b0004] Hadoop 版hello word mapreduce wordcount 运行的更多相关文章

  1. [b0013] Hadoop 版hello word mapreduce wordcount 运行(三)

    目的: 不用任何IDE,直接在linux 下输入代码.调试执行 环境: Linux  Ubuntu Hadoop 2.6.4 相关: [b0012] Hadoop 版hello word mapred ...

  2. [b0012] Hadoop 版hello word mapreduce wordcount 运行(二)

    目的: 学习Hadoop mapreduce 开发环境eclipse windows下的搭建 环境: Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到ecl ...

  3. Hadoop版Helloworld之wordcount运行示例

    1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...

  4. Hadoop集群WordCount运行详解(转)

    原文链接:Hadoop集群(第6期)_WordCount运行详解 1.MapReduce理论简介 1.1 MapReduce编程模型 MapReduce采用"分而治之"的思想,把对 ...

  5. hadoop 2.7.3本地环境运行官方wordcount

    hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...

  6. Hadoop学习历程(四、运行一个真正的MapReduce程序)

    上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序. 运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world. 1. 首先确认启动的正常:运行 s ...

  7. (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序

    配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一.   需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...

  8. hadoop笔记之MapReduce的运行流程

    MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...

  9. Hadoop(六)MapReduce的入门与运行原理

    一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...

随机推荐

  1. 用IIS进行部署,发布网页,运行DEMO

    因项目需要,正在学习如何部署IIS服务,并发布网站,发布以后,运行网页,具体步骤如下: 一.IIS的部署 在进行部署前,需要将一些必要的配置选好,如图: 打开选项,进行设置,将箭头部分进行勾选 在wi ...

  2. Linux ssh突然连接不了的案例浅析

    公司的Linux服务器都是通过一台JumpServer跳转的.个人使用Jumpserver(开源跳板机系统)时,有时候由于需要上传.下载文件很不方便.而由于配置关系,一般情况无法使用SecureCRT ...

  3. [Linux] 获取出日志中的邮箱shell

    需求是把所有的日志中邮箱获取出来,根据指定关键字过滤,邮箱的格式是\txxx@xxx\t的格式,日志的存放是按照日期作为目录 #!/bin/bash logBasePath="/data1/ ...

  4. Linux系统学习 四、网络基础—互联网概述,互联网接入方式

    互联网概述 WWW:万维网 FTP:文件传输协议 E-MAIL:电子邮件 WWW 典型的C/S架构 URL:统一资源定位 协议+域名或IP:端口+网页路径+网页名 http://www.xxx.com ...

  5. 查看Maven版本

  6. golang中的viper示例

    这是第二次实操viper了, 年纪大了就多练练,才能记住. http://go.coder55.com/article/6589 https://github.com/spf13/viper pack ...

  7. 预览本地图片原生js

    <!-- 样似总结: 用a标签代替file,做文件上传. 将file进行绝对定位,透明度设置为0:宽度为“上传图片”的宽度,超出部分隐藏. 这样做是为了将file隐藏起来.用a标签代替file ...

  8. vue踩坑--细节决定成败

    1.错误示例 . 2.错误的地方 3.修改后代码 4.错误分析

  9. @ConfigurationProperties(pref="")加载局部配置文件

    刚开始@ConfigurationProperties(文件名)直接在参数里加文件名,其实是配置前缀pref="前缀".加载局部配置文件是@PropertySource(value ...

  10. 201871010126 王亚涛 《面向对象程序设计(java)》 第一周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/wyt0455820/ ...