NNVM AI框架编译器
NNVM AI框架编译器
深度学习已变得无处不在且不可或缺。看到对在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长。TVM堆栈弥合深度学习框架与面向性能或效率的硬件后端之间的鸿沟。TVM堆栈使为深度学习框架轻松构建端到端编译变得容易。拥有适用于所有框架的统一解决方案更好。
NNVM编译器是一种开放式深度学习编译器,用于将前端框架工作负载直接编译到硬件后端。使用TVM堆栈中的两级中间表示(IR)来构建。可以参考原始的TVM公告,以获取有关TVM堆栈的更多技术细节。借助TVM堆栈,NNVM编译器可以:
- 在高级图IR中表示并优化常见的深度学习工作负载
- 转换计算图以最大程度地减少内存利用率,优化数据布局并融合不同硬件后端的计算模式。
- 提出从前端深度学习框架到裸机硬件的端到端编译管道。
NNVM编译器可以直接从深度学习框架(例如Apache MXNet)中获取模型。支持模型交换格式,例如ONNX和CoreML。ONNX支持使NNVM能够从PyTorch,Caffe2和CNTK编译深度学习模型。CoreML前端支持将CoreML模型部署到非iOS设备。
优化与部署分离
NNVM编译器应用图级和张量级优化,并共同优化它们以获得最佳性能。采用与现有深度学习框架不同的方法,后者将图形优化与部署运行时打包在一起。NNVM编译器采用了编译器的传统知识,将优化与实际部署运行时分开。这种方法提供了实质性的优化,但仍使运行时轻量级。编译后的模块仅取决于最小的TVM运行时,部署在Raspberry Pi或移动设备上时仅需300KB左右。
性能
NNVM编译器仍在积极开发中,可以期待会有更多的改进,但是已经开始看到令人鼓舞的结果。对它的性能进行了基准测试,并在两种典型的硬件配置上将其与Apache MXNet进行了比较:Raspberry PI上的ARM CPU和AWS上的Nvidia GPU。尽管这两款芯片在架构上存在根本差异,但可以使用相同的基础架构,只需要更改每种硬件的调度即可。
Nvidia GPU
GPU基准和调度将NNVM编译器与Apache MXNet与CUDA8和cuDNN7作为Nvidia K80的后端进行了比较。这是一个非常强大的基准,因为Apache MXNet会打开自动调整功能,以从CuDNN中选择最佳内核。使用了MXNet中优化的深度智能内核来优化MobileNet工作负载。
可以看出,NNVM编译器生成的代码胜过K80上的Apache MXNet。这些改进归因于联合图级别和内核级别的优化。值得注意的是,NNVM编译器可自行生成所有优化的GPU内核,而无需依赖诸如CuDNN之类的外部库。
树莓派3b
Rasberry Pi编译堆栈将NNVM编译器与带有OpenBLAS和NNPack的Apache MXNet进行了比较。探索了使MXNet发挥最佳性能的设置:为3x3卷积打开了NNPACK中的Winograd卷积,启用了多线程,并禁用了其他调度程序线程(因此,所有线程都被NNPack使用)。
可以看出,在ResNet18上,NNVM编译器生成的代码快两倍。MobileNet上的差距主要是由于现有CPU DNN库中缺乏深度卷积。NNVM编译器利用直接直接生成有效的ARM代码的优势。
在构建NNVM编译器时,包含以下项目内容。
- Theano:可能是最早的深度学习编译器
- Halide:TVM使用HalideIR作为数据结构,以简化数学运算和降低 low level lowering.。HalideIR衍生自Halide。当在TVM中实施降低流程the lowering pipeline时,参考了Halide结构。
- Loopy:使用整数集分析及其循环转换原语。
NNVM AI框架编译器的更多相关文章
- NNVM Compiler,AI框架的开放式编译器
NNVM Compiler,AI框架的开放式编译器 深度学习已变得无处不在且不可或缺.在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长.宣布了TVM堆栈,以弥 ...
- AI框架精要:设计思想
AI框架精要:设计思想 本文主要介绍飞桨paddle平台的底层设计思想,可以帮助用户理解飞桨paddle框架的运作过程,以便于在实际业务需求中,更好的完成模型代码编写与调试及飞桨paddle框架的二次 ...
- 中国人工智能AI框架自主研发
中国人工智能AI框架自主研发 中国AI界争相构建AI开源框架的背后,技术和业务层面的考量因素当然重要,但也不应忽视国家层面的政策支持.对于AI基础设施的建设,中国政府在<新一代人工智能发展规划& ...
- AI框架中图层IR的分析
摘要:本文重点分析一下AI框架对IR有什么特殊的需求.业界有什么样的方案以及MindSpore的一些思考. 本文分享自华为云社区<MindSpore技术专栏 | AI框架中图层IR的分析> ...
- 昇思MindSpore全场景AI框架 1.6版本,更高的开发效率,更好地服务开发者
摘要:本文带大家快速浏览昇思MindSpore全场景AI框架1.6版本的关键特性. 全新的昇思MindSpore全场景AI框架1.6版本已发布,此版本中昇思MindSpore全场景AI框架易用性不断改 ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- 在windows上极简安装GPU版AI框架(Tensorflow、Pytorch)
在windows上极简安装GPU版AI框架 如果我们想在windows系统上安装GPU版本的AI框架,比如GPU版本的tesnorflow,通常我们会看到类似下面的安装教程 官方版本 安装CUDA 安 ...
- AI框架类FAQ
AI框架类FAQ 数据处理 问题:如何在训练过程中高效读取数量很大的数据集? 答复:当训练时使用的数据集数据量较大或者预处理逻辑复杂时,如果串行地进行数据读取,数据读取往往会成为训练效率的瓶颈.这种情 ...
- AI框架外部用户贡献代码
AI框架外部用户贡献代码 概述 飞桨是百度自主研发的一款开源的深度学习框架,是主流深度学习框架中首个完全国产化的产品,已经在农业.医疗.林业.科研.服务等领域成功应用.无论是已入职场的深度学习从业者. ...
随机推荐
- Hook android系统调用的实践
本文博客地址:http://blog.csdn.net/qq1084283172/article/details/71037182 一.环境条件 Ubuntukylin 14.04.5 x64bit ...
- hdu4454 三分 求点到圆,然后在到矩形的最短路
题意: 求点到圆,然后在到矩形的最短路. 思路: 把圆切成两半,然后对于每一半这个答案都是凸性的,最后输出两半中小的那个就行了,其中有一点,就是求点到矩形的距离,点到矩形的距离 ...
- hdu3255 线段树扫描线求体积
题意: 给你n个矩形,每个矩形上都有一个权值(该矩形单位面积的价值),矩形之间可能重叠,重叠部分的权值按照最大的算,最后问这n个矩形组成的图形的最大价值. 思路: 线段树扫描线 ...
- Cookie、Session和Token认证
目录 Cookie Session认证机制 Session的一些安全配置 Token认证机制 Token预防CSRF Session认证和Token认证的区别 前言:HTTP是一种无状态的协议,为了分 ...
- C#-播放器相关
axWindowsMediaPlayer1.URL= 设置路径 axWindowsMediaPlayer1.Ctlcontrols.play();开始 axWindowsMediaPlayer1.Ct ...
- js限制上传文件类型和大小
<html> <head> <script type="text/javascript"> function fileChange(target ...
- Andrew Ng机器学习算法入门((七):特征选择和多项式回归
特征选择 还是回归到房价的问题.在最开始的问题中,我们假设房价与房屋面积有关,那么最开始对房价预测的时候,回归方程可能如下所示: 其中frontage表示的房子的长,depth表示的是房子的宽. 但长 ...
- JavaScript中DOM与BOM的区别
1.BOM BOM全称为Brower Object Model,中文翻译为浏览器对象模型,提供了独立于内容而与浏览器窗口进行交互的对象.描述了与浏览器进行交互的方法和接口.通过BOM可以用来获取或设置 ...
- LINQ之查询语法
新开一节LINQ的入门讲解. LINQ(Language Integrated Query)语言集成查询,是C#语言的扩展,它的主要功能是从数据集中查询数据,就像通过sql语句从数据库查询数据一样(本 ...
- 初探MFC
MFC MFC(Microsoft Foundation Classes) 是微软基础类库,也就是用c++类将win32API封装起来. 应用程序对象 MFC程序都是以应用程序对象为核心,且程序中只有 ...