Content

试求出在一个 \(n\times n\) 的地图 \(M\) 中,满足 \(1\leqslant i,j\leqslant n\) 且 \(M_{i,j}=M_{i+1,j+1}=M_{i-1,j+1}=M_{i-1,j-1}=M_{i+1,j-1}=\) X 这个字符的 \((i,j)\) 的对数。

数据范围:\(1\leqslant n\leqslant 500\),字符只包含 X 或者 .

Solution

直接暴力枚举判断就好了,建议用 \(i=1\sim n,j=1\sim n\) 的方式读入,再将数组开大点,就不需要考虑越界的问题了。具体见代码。

Code

int n, ans;
char a[507][507]; int main() {
getint(n);
_for(i, 1, n) scanf("%s", a[i] + 1);
_for(i, 1, n)
_for(j, 1, n)
if(a[i][j] == 'X' && a[i + 1][j + 1] == 'X' && a[i - 1][j + 1] == 'X' && a[i - 1][j - 1] == 'X' && a[i + 1][j - 1] == 'X') ans++;
writeint(ans);
return 0;
}

CF1106A Lunar New Year and Cross Counting 题解的更多相关文章

  1. CSAcademy Prefix Suffix Counting 题解

    CSAcademy Prefix Suffix Counting 题解 目录 CSAcademy Prefix Suffix Counting 题解 题意 思路 做法 程序 题意 给你两个数字\(N\ ...

  2. [USACO17JAN]Promotion Counting 题解

    前言 巨佬说:要有线段树,结果蒟蒻打了一棵树状数组... 想想啊,奶牛都开公司当老板了,我还在这里码代码,太失败了. 话说奶牛开个公司老板不应该是FarmerJohn吗? 题解 刚看到这道题的时候竟然 ...

  3. POJ 2386 Lake Counting 题解《挑战程序设计竞赛》

    地址 http://poj.org/problem?id=2386 <挑战程序设计竞赛>习题 题目描述Description Due to recent rains, water has ...

  4. codeforces#536题解

    CodeForces#536 A. Lunar New Year and Cross Counting Description: Lunar New Year is approaching, and ...

  5. 题解-Codeforces1106全套

    因为参加完wc后心情很差,而且在广州过年没Ubuntu,所以就没打这场比赛了,结果这套题全部1A了,现在看来真是错失良机 结果这场不计rating 今天是除夕,大家节日快乐 A. Lunar New ...

  6. 山东省第四届ACM大学生程序设计竞赛解题报告(部分)

    2013年"浪潮杯"山东省第四届ACM大学生程序设计竞赛排名:http://acm.upc.edu.cn/ranklist/ 一.第J题坑爹大水题,模拟一下就行了 J:Contes ...

  7. POJ3467(预处理)

    Cross Counting Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 1331   Accepted: 375 De ...

  8. 牛客网暑期ACM多校训练营(第二场)message

    传送门:https://ac.nowcoder.com/acm/problem/16631 题意 对于直线y=ax+b,给出n个的a[i]和b[i].m次询问,每次询问给出直线y=cx+d的c[i]和 ...

  9. 【题解】Counting D-sets(容斥+欧拉定理)

    [题解]Counting D-sets(容斥+欧拉定理) 没时间写先咕咕咕. vjCodeChef - CNTDSETS 就是容斥,只是难了一二三四五\(\dots \inf\)点 题目大意: 给定你 ...

随机推荐

  1. win10 如何查看本地连接的WIFI密码

    1 在状态栏右侧找到WIFI图标,右键WIFI图标,打开"网路和 Internet"设置 2 切换到 "状态"或"WLAN",找到" ...

  2. vue-if和show

    <template> <div> <div v-if="flag">今晚要上课</div> <div v-else> 今 ...

  3. 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)

    题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...

  4. AT4168 [ARC100C] Or Plus Max

    从\(whk\)回来了. 考虑我们需要维护一个子集的信息. 对于二进制的子集信息维护有一个很经典的操作: 高维前缀和. AT4168 [ARC100C] Or Plus Max // Problem: ...

  5. Topcoder 10748 - StringDecryption(dp)

    题面传送门 神仙题. 首先这个两次加密略微有点棘手,咱们不妨先从一次加密的情况入手考虑这个问题.显然,一次加密等价于将加密过的序列划分成若干段,每一段都是 \(xd\) 的形式表示这一段中有 \(x\ ...

  6. socket编程:多路复用I/O服务端客户端之select

    其实在之前的TCP之中,我们编程实现了多进程,多线程机制下的TCP服务器,但是对于这种的TCP服务器而言,存在太大的资源局限性.所以我们可以是用I/0模型中的多路复用I/O模型来进行编程. 他的具体思 ...

  7. Python中类的各式方法介绍

    本文类的方法介绍包括类方法.属性方法.静态方法.修改属性方法等内置装饰器装饰的方法,以及类的一些特殊成员方法 1. 类的特殊成员方法 1.1 构造方法 # -*- coding:utf-8 -*- # ...

  8. SpringBoot整合Shiro 四:认证+授权

    搭建环境见: SpringBoot整合Shiro 一:搭建环境 shiro配置类见: SpringBoot整合Shiro 二:Shiro配置类 shiro整合Mybatis见:SpringBoot整合 ...

  9. 多选项、多个选择项【c#】

    <%@ Control Language="C#" AutoEventWireup="true" CodeFile="AddDataInfoCe ...

  10. day6 基本数据类型及内置方法

    day6 基本数据类型及内置方法 一.10进制转其他进制 1. 十进制转二进制 print(bin(11)) #0b1011 2. 十进制转八进制 print(hex(11)) #0o13 3. 十进 ...