\(\mathcal{Description}\)

  Link.

  有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\)。进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\)。求变换完成后 \(x=i~(i=0..n)\) 的概率。答案模 \(998244353\)。

\(\mathcal{Solution}\)

  令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然一次变换是对 \(\boldsymbol p\) 的线性变换 \(A\),有

\[A=\begin{bmatrix}
1&\frac{1}{2}&\cdots&\frac{1}{n}&\frac{1}{n+1}\\
&\frac{1}{2}&\cdots&\frac{1}{n}&\frac{1}{n+1}\\
&&\ddots&\vdots&\vdots\\
&&&\frac{1}{n}&\frac{1}{n+1}\\
&&&&\frac{1}{n+1}
\end{bmatrix}.
\]

  我们的目标即为求出 \(A^m\boldsymbol p\)。注意到 \(A\) 的特征值很明显——\(\lambda_i=\frac{1}{i+1},i\in[0,n]\),所以可以考虑将其对角化来加速矩阵幂的计算。手算一下 \(\lambda_i\) 所对应的特征向量 \(\boldsymbol v_i\),发现一组特解

\[\boldsymbol v_i=\begin{bmatrix}
\binom{i}{0}\\
-\binom{i}{1}\\
\binom{i}{2}\\
\vdots\\
(-1)^n\binom{i}{n}
\end{bmatrix},
\]

那么 \(V=\begin{bmatrix}\boldsymbol v_0&\boldsymbol v_1&\cdots&\boldsymbol v_n\end{bmatrix}\) 有

\[V_{ij}=(-1)^i\binom{j}{i}.
\]

  尝试对 \(V\) 求逆,由于

\[\begin{aligned}
V_{ij}^2 &= \sum_{k=0}^{n-1}(-1)^i\binom{k}{i}\cdot(-1)^k\binom{j}{k}\\
&= \sum_{k=0}^{n-1}(-1)^{i+k}\binom{j}{i}\binom{j-i}{k-i}\\
&= (-1)^i\binom{j}{i}\sum_{k=0}^{n=1}(-1)^k\binom{j-i}{k-i}\\
&= (-1)^i\binom{j}{i}(1-1)^{j-i}\\
&= [i=j],
\end{aligned}
\]

所以 \(V=V^{-1}\)。因此答案为

\[V\begin{bmatrix}
\lambda_0^m\\
&\lambda_1^m\\
&&\ddots\\
&&&\lambda_n^m
\end{bmatrix}V\boldsymbol p.
\]

其中 \(V\) 的变换效果是一个差卷积,NTT 实现即可。复杂度 \(\mathcal O(n\log n)\)。

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef long long LL; const int MAXL = 1 << 18, MOD = 998244353, G = 3;
int n, p[MAXL + 5], fac[MAXL + 5], ifac[MAXL + 5];
LL m; inline int sgn(const int u) { return u & 1 ? MOD - 1 : 1; }
inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} inline void init() {
fac[0] = 1;
rep (i, 1, n) fac[i] = mul(i, fac[i - 1]);
ifac[n] = mpow(fac[n], MOD - 2);
per (i, n - 1, 0) ifac[i] = mul(i + 1, ifac[i + 1]);
} inline void ntt(const int n, int* u, const int tp) {
static int rev[MAXL + 5]; int lgn = 31 - __builtin_clz(n);
rep (i, 1, n - 1) rev[i] = rev[i >> 1] >> 1 | (i & 1) << lgn >> 1;
rep (i, 0, n - 1) if (i < rev[i]) std::swap(u[i], u[rev[i]]);
for (int stp = 1; stp < n; stp <<= 1) {
int wi = mpow(G, (MOD - 1) / (stp << 1));
for (int j = 0; j < n; j += stp <<1 ) {
for (int wk = 1, k = j; k < j + stp; ++k, wk = mul(wk, wi)) {
int ev = u[k], ov = mul(wk, u[k + stp]);
u[k] = add(ev, ov), u[k + stp] = sub(ev, ov);
}
}
}
if (!~tp) {
std::reverse(u + 1, u + n);
int inv = mpow(n, MOD - 2);
rep (i, 0, n - 1) u[i] = mul(u[i], inv);
}
} inline void transV() {
static int f[MAXL + 5], g[MAXL + 5];
int len = 1 << 32 - __builtin_clz((n << 1) - 1);
rep (i, 0, len - 1) f[i] = g[i] = 0;
rep (i, 0, n - 1) f[i] = mul(fac[i], p[i]), g[i] = ifac[n - 1 - i];
ntt(len, f, 1), ntt(len, g, 1);
rep (i, 0, len - 1) f[i] = mul(f[i], g[i]);
ntt(len, f, -1);
rep (i, 0, n - 1) p[i] = mul(mul(sgn(i), ifac[i]), f[n - 1 + i]);
} int main() {
scanf("%d %lld", &n, &m);
++n, m %= MOD - 1, init();
rep (i, 0, n - 1) scanf("%d", &p[i]); transV();
rep (i, 0, n - 1) p[i] = mul(p[i], mpow(i + 1, MOD - 1 - m));
transV();
rep (i, 0, n - 1) printf("%d%c", p[i], i < repi ? ' ' : '\n');
return 0;
}

Solution -「CF 923E」Perpetual Subtraction的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  5. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  6. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  7. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  8. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  9. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

随机推荐

  1. Nginx 防爬虫设置

    在conf下  vi 一个文件agent_deny.conf 添加如下内容 #禁止Scrapy|curl等工具的抓取 if ($http_user_agent ~* (Scrapy|Curl|Http ...

  2. CentOS7 防火墙firewalld 和 CentOS6 防火墙iptables 开放zabbix-agent端口的方法

    我们在生产环境中,一般都是把防火墙打开的,不像测试环境,可以直接关闭掉.最近安装zabbix ,由于公司服务器既有centos 7又有centos 6,遇到了一些防火墙的问题,现在正好把centos防 ...

  3. Go语言系列之依赖管理

    依赖管理 为什么需要依赖管理? 最早的时候,Go所依赖的所有的第三方库都放在GOPATH这个目录下面.这就导致了同一个库只能保存一个版本的代码.如果不同的项目依赖同一个第三方的库的不同版本,应该怎么解 ...

  4. Java8的stream用法整理

    map 1 直接获取对象的值 this.categoryMapper.selectByIdList(ids).stream().map(Category::getName).collect(Colle ...

  5. iOS二进制方案真实落地经验(30分钟降低到10分钟以内)

    iOS二进制方案真实落地经验(30分钟降低到10分钟以内) 我们做iOS二进制化断断续续尝试了一年多了,来来回回换了三个架构师去尝试落地,今日完全落地,在此做个总结 背景 工程基于cocoapod的组 ...

  6. C# - 逆变的具体应用场景

    前言 早期在学习泛型的协变与逆变时,网上的文章讲解.例子算是能看懂,但关于逆变的具体应用场景这方面的知识,我并没有深刻的认识. 本文将在具体的场景下,从泛型接口设计的角度出发,逐步探讨逆变的作用,以及 ...

  7. golang中的sync

    1. Go语言中可以使用sync.WaitGroup来实现并发任务的同步 package main import ( "fmt" "sync" ) func h ...

  8. ansible roles实践 zookeeper集群部署

    1.下载解压 wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.4.11/zookeeper-3.4.11. ...

  9. Java枚举-通过值查找对应的枚举

    一.背景 Java 枚举是一个特殊的类,一般表示一组常量,比如一年的 4 个季节,一个年的 12 个月份,一个星期的 7 天,方向有东南西北等. 最近工作中,对接了很多其他的系统,发现对接的同一个系统 ...

  10. SuperPoint: Self-Supervised Interest Point Detection and Description 论文笔记

    Introduction 这篇文章设计了一种自监督网络框架,能够同时提取特征点的位置以及描述子.相比于patch-based方法,本文提出的算法能够在原始图像提取到像素级精度的特征点的位置及其描述子. ...