\(\mathcal{Description}\)

  Link.

  有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\)。进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\)。求变换完成后 \(x=i~(i=0..n)\) 的概率。答案模 \(998244353\)。

\(\mathcal{Solution}\)

  令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然一次变换是对 \(\boldsymbol p\) 的线性变换 \(A\),有

\[A=\begin{bmatrix}
1&\frac{1}{2}&\cdots&\frac{1}{n}&\frac{1}{n+1}\\
&\frac{1}{2}&\cdots&\frac{1}{n}&\frac{1}{n+1}\\
&&\ddots&\vdots&\vdots\\
&&&\frac{1}{n}&\frac{1}{n+1}\\
&&&&\frac{1}{n+1}
\end{bmatrix}.
\]

  我们的目标即为求出 \(A^m\boldsymbol p\)。注意到 \(A\) 的特征值很明显——\(\lambda_i=\frac{1}{i+1},i\in[0,n]\),所以可以考虑将其对角化来加速矩阵幂的计算。手算一下 \(\lambda_i\) 所对应的特征向量 \(\boldsymbol v_i\),发现一组特解

\[\boldsymbol v_i=\begin{bmatrix}
\binom{i}{0}\\
-\binom{i}{1}\\
\binom{i}{2}\\
\vdots\\
(-1)^n\binom{i}{n}
\end{bmatrix},
\]

那么 \(V=\begin{bmatrix}\boldsymbol v_0&\boldsymbol v_1&\cdots&\boldsymbol v_n\end{bmatrix}\) 有

\[V_{ij}=(-1)^i\binom{j}{i}.
\]

  尝试对 \(V\) 求逆,由于

\[\begin{aligned}
V_{ij}^2 &= \sum_{k=0}^{n-1}(-1)^i\binom{k}{i}\cdot(-1)^k\binom{j}{k}\\
&= \sum_{k=0}^{n-1}(-1)^{i+k}\binom{j}{i}\binom{j-i}{k-i}\\
&= (-1)^i\binom{j}{i}\sum_{k=0}^{n=1}(-1)^k\binom{j-i}{k-i}\\
&= (-1)^i\binom{j}{i}(1-1)^{j-i}\\
&= [i=j],
\end{aligned}
\]

所以 \(V=V^{-1}\)。因此答案为

\[V\begin{bmatrix}
\lambda_0^m\\
&\lambda_1^m\\
&&\ddots\\
&&&\lambda_n^m
\end{bmatrix}V\boldsymbol p.
\]

其中 \(V\) 的变换效果是一个差卷积,NTT 实现即可。复杂度 \(\mathcal O(n\log n)\)。

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef long long LL; const int MAXL = 1 << 18, MOD = 998244353, G = 3;
int n, p[MAXL + 5], fac[MAXL + 5], ifac[MAXL + 5];
LL m; inline int sgn(const int u) { return u & 1 ? MOD - 1 : 1; }
inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} inline void init() {
fac[0] = 1;
rep (i, 1, n) fac[i] = mul(i, fac[i - 1]);
ifac[n] = mpow(fac[n], MOD - 2);
per (i, n - 1, 0) ifac[i] = mul(i + 1, ifac[i + 1]);
} inline void ntt(const int n, int* u, const int tp) {
static int rev[MAXL + 5]; int lgn = 31 - __builtin_clz(n);
rep (i, 1, n - 1) rev[i] = rev[i >> 1] >> 1 | (i & 1) << lgn >> 1;
rep (i, 0, n - 1) if (i < rev[i]) std::swap(u[i], u[rev[i]]);
for (int stp = 1; stp < n; stp <<= 1) {
int wi = mpow(G, (MOD - 1) / (stp << 1));
for (int j = 0; j < n; j += stp <<1 ) {
for (int wk = 1, k = j; k < j + stp; ++k, wk = mul(wk, wi)) {
int ev = u[k], ov = mul(wk, u[k + stp]);
u[k] = add(ev, ov), u[k + stp] = sub(ev, ov);
}
}
}
if (!~tp) {
std::reverse(u + 1, u + n);
int inv = mpow(n, MOD - 2);
rep (i, 0, n - 1) u[i] = mul(u[i], inv);
}
} inline void transV() {
static int f[MAXL + 5], g[MAXL + 5];
int len = 1 << 32 - __builtin_clz((n << 1) - 1);
rep (i, 0, len - 1) f[i] = g[i] = 0;
rep (i, 0, n - 1) f[i] = mul(fac[i], p[i]), g[i] = ifac[n - 1 - i];
ntt(len, f, 1), ntt(len, g, 1);
rep (i, 0, len - 1) f[i] = mul(f[i], g[i]);
ntt(len, f, -1);
rep (i, 0, n - 1) p[i] = mul(mul(sgn(i), ifac[i]), f[n - 1 + i]);
} int main() {
scanf("%d %lld", &n, &m);
++n, m %= MOD - 1, init();
rep (i, 0, n - 1) scanf("%d", &p[i]); transV();
rep (i, 0, n - 1) p[i] = mul(p[i], mpow(i + 1, MOD - 1 - m));
transV();
rep (i, 0, n - 1) printf("%d%c", p[i], i < repi ? ' ' : '\n');
return 0;
}

Solution -「CF 923E」Perpetual Subtraction的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  5. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  6. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  7. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  8. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  9. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

随机推荐

  1. IE8和IE9下textarea滚动选中的问题

    在IE8和IE9下如果textarea设置了样式overflow-y:auto;就不可以滚动选中了,应该样式写成overflow:auto;有了纵向滚动实际上就不会出现横向滚动的情况,也没有必要ove ...

  2. 51 Nod 1083 矩阵取数问题(动态规划)

    原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1083 题目分析:通过读题发现我们只能往右边或者下边走,意味着 ...

  3. Visual Studio 2022(VS2022)激活密钥

    Visual Studio 2022(VS2022) 激活码: 专业版 Pro: TD244-P4NB7-YQ6XK-Y8MMM-YWV2J 企业版 Enterprise: VHF9H-NXBBB-6 ...

  4. python2.7发送邮件失败之——代码问题

    使用python2.7发送邮件,代码如下: from email.header import Headerfrom email.mime.text import MIMETextimport smtp ...

  5. mysql数据库优化1

    目录 数据库结构的设计优化 1.数据库结构的设计 2.针对大型的数据量提前进行分库和分表 3.分库分表带来的问题 4.表结构设计注意的问题 查询优化 1.查询语句的注意事项 2.应尽量避免在 wher ...

  6. 第02讲:Flink 入门程序 WordCount 和 SQL 实现

    我们右键运行时相当于在本地启动了一个单机版本.生产中都是集群环境,并且是高可用的,生产上提交任务需要用到flink run 命令,指定必要的参数. 本课时我们主要介绍 Flink 的入门程序以及 SQ ...

  7. cocos2dx 入口函数分析

    以下是main函数最开始的两段,也是cocos2d一开始执行的地方: AppDelegate app; return Application::getInstance()->run(); 接下来 ...

  8. mysql主从模型下如果保证主误删除数据,尽可能避免数据丢失方案

  9. gin中映射查询字符串或表单参数

    package main import ( "fmt" "github.com/gin-gonic/gin" ) func main() { r := gin. ...

  10. java继承子类实例化过程(细节解释)

    1 package face_08; 2 class Fu{ 3 Fu(){ 4 super(); 5 show(); 6 return; 7 } 8 void show() { 9 System.o ...