\(\mathcal{Description}\)

  Link.

  指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\) 关系,求合法树的个数。

  \(0\le m<n\le13\),\(q\le100\)。

\(\mathcal{Solution}\)

  巧妙的状压 owo。不考虑限制,自然地有状态 \(f(u,S)\) 表示用 \(S\) 中的结点构成以 \(u\) 为根的树的方案数。转移相当于划分出一棵子树,有:

\[f(u,S)=\sum_{v\in T\subseteq(S\setminus u)}f(v,T)f(u,S-T)
\]

  不过这样显然会算重复。考虑任意固定子树 \(T\) 内的某个点,设 \(p\not=u\) 且 \(p\in T\),钦定 \(p\in T\) 就避免了重复,则:

\[f(u,S)=\sum_{v,p\in T\subseteq(S\setminus u)}f(v,T)f(u,S-T)
\]

  注意 \(p\) 在求和过程中是常量


  接下来着手处理限制:

  • 限制 \(\text{LCA}\),设当前状态 \(f(w,S)\),枚举到子集 \(T\):

    • 若 \((u\in T)\land(v\in T)\Leftrightarrow\mathrm T\)(注意最后这个罗马字体的 \(\mathrm T\) 表示逻辑运算为真),\(u\) 和 \(v\) 的 \(\text{LCA}\) 必然在 \(T\) 中,所以必然不是 \(w\),矛盾。
    • 若 \(q,r\) 的 \(\text{LCA}\) 指定为 \(p\),且 \(p\in T\land(q\not\in T\lor q\not\in T)\Leftrightarrow \mathrm T\),即两点的 \(\text{LCA}\) 深于其中至少一个点,显然不满足。
  • 限制邻接点,同样地设当前状态 \(f(w,S)\),枚举到子集 \(T\):
    • 若 \(u,v\not=r\) 邻接,且 \((u\in T)\leftrightarrow(v\in T)\Leftrightarrow\mathrm F\),即有且仅有其中一点属于 \(T\),矛盾。
    • 若 \(u,v\) 均与 \(w\) 邻接,且 \((u\in T)\land(v\in T)\Leftrightarrow\mathrm T\),即 \(w\) 向子树 \(T\) 内的至少两个点连边,矛盾。

  转移的时候判一下这四种情况就行啦。

  复杂度 \(\mathcal O(3^nn(n+m+q))\),不过跑不满。为什么我交一发当场最优解 rank1 呢 www?

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <cstring> #define bel( x, S ) ( ( S >> x ) & 1 ) typedef long long LL;
typedef std::pair<int, int> pii; const int MAXN = 13;
int n, m, q;
LL f[MAXN + 5][1 << MAXN];
std::vector<int> adj[MAXN + 5];
std::vector<pii> dif[MAXN + 5]; inline bool check ( const int r, const int T ) {
for ( pii p: dif[r] ) { // LCA情况1.
if ( bel ( p.first, T ) && bel ( p.second, T ) ) {
return false;
}
}
for ( int u = 0; u < n; ++ u ) { // LCA情况2.
if ( ! ( ( T >> u ) & 1 ) ) continue;
for ( pii p: dif[u] ) {
if ( ! bel ( p.first, T ) || ! bel ( p.second, T ) ) {
return false;
}
}
}
for ( int u = 0; u < n; ++ u ) { // 邻接情况1.
if ( u == r ) continue;
for ( int v: adj[u] ) {
if ( v ^ r && bel ( u, T ) ^ bel ( v, T ) ) {
return false;
}
}
}
int cnt = 0;
for ( int u: adj[r] ) cnt += bel ( u, T ); // 邻接情况2.
return cnt <= 1;
} inline LL solve ( const int r, int S ) {
LL& ret = f[r][S];
if ( ~ ret ) return ret;
ret = 0, S ^= 1 << r; // 这里注意去除根节点.
int p;
for ( p = 0; p < n && ! ( ( S >> p ) & 1 ); ++ p ); // 钦定一点p.
for ( int T = S; T; T = ( T - 1 ) & S ) { // 枚举子集.
if ( ! ( ( T >> p ) & 1 ) || ! check ( r, T ) ) continue;
for ( int u = 0; u < n; ++ u ) {
if ( ! bel ( u, T ) ) continue;
ret += solve ( u, T ) * solve ( r, S ^ T ^ ( 1 << r ) );
}
}
return ret;
} int main () {
scanf ( "%d %d %d", &n, &m, &q );
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v ), -- u, -- v;
adj[u].push_back ( v ), adj[v].push_back ( u );
}
for ( int i = 1, u, v, w; i <= q; ++ i ) {
scanf ( "%d %d %d", &u, &v, &w ), -- u, -- v, -- w;
dif[w].push_back ( { u, v } );
}
memset ( f, 0xff, sizeof f );
for ( int u = 0; u < n; ++ u ) f[u][1 << u] = 1; // 单点,一种方案.
printf ( "%lld\n", solve ( 0, ( 1 << n ) - 1 ) );
return 0;
}

Solution -「CF 599E」Sandy and Nuts的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

随机推荐

  1. 灵雀云新一期DevOps认证培训圆满结束,下期学员招募同步开启

    近日,灵雀云最新一期EXIN DevOps认证培训在北京圆满结束,来自某知名运营商领域ISV的近40名学员以百分百的通过率为此次培训画上圆满的句号. 灵雀云是国内首家在DevOps培训领域与EXIN合 ...

  2. efcore使用ShardingCore实现分表分库下的多租户

    efcore使用ShardingCore实现分表分库下的多租户 介绍 本期主角:ShardingCore 一款ef-core下高性能.轻量级针对分表分库读写分离的解决方案,具有零依赖.零学习成本.零业 ...

  3. CodeForces 519B A and B and Compilation Errors (超水题)

    这道题是超级水的,在博客上看有的人把这道题写的很麻烦. 用 Python 的话是超级的好写,这里就奉上 C/C++ 的AC. 代码如下: #include <cstdio> #includ ...

  4. Redis可视化内存分析工具--RDR:查看Redis中key的占用情况

    RDR(redis datareveal)是一个解析redis rdbfile的工具.与redis-rdb-tools 相比,RDR 是由 golang 实现的,速度要快得多(5GB rdbfile ...

  5. Nginx高级模块学习

    Nginx的rewrite规则 实现url重写一级重定向 使用场景: 1.URL访问跳转,支持开发设计 页面跳转.兼容性支持.展示效果 2.SEO优化 3.维护 后台维护.流量转发等 4.安全 配置语 ...

  6. Easticsearch概述(API使用)二

    Rest简介 一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件.它主要用于客户端和服务端互类的软件.基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制 Rest的操作分为以 ...

  7. preg_match绕过总结

    preg_match绕过总结 什么是preg_match 绕过方法 1.数组绕过 preg_match只能处理字符串,当传入的subject是数组时会返回false 2.PCRE回溯次数限制 PHP利 ...

  8. BarTender调用示例

    安装BarTender 软件后,会注册一个COM 然后在项目中添加BarTender COM 引用 BarTender模板中的条码右键属性-数据源类型-嵌入的数据-名称(比如设置为 barcode p ...

  9. JSON串、JSON对象、Java对象的相互转换

    对象类型转换2: com.alibaba.fastjson.JSONObject时经常会用到它的转换方法,包括Java对象转成JSON串.JSON对象,JSON串转成java对象.JSON对象,JSO ...

  10. netty基础知识

    参考 http://www.infoq.com/cn/articles/netty-high-performance 1. 传统 RPC 调用性能差的三宗罪 1)网络传输方式问题 2)序列化方式问题 ...