\(\mathcal{Description}\)

  给定 \(n\) 个点 \(m\) 条边的无向图,每条边形如 \((u,v,r)\),表示 \(u,v\) 之间有一条阻值为 \(r\Omega\) 的电阻。求 \(S\) 到 \(T\) 的等效电阻。

  \(n\le100\),\(m\le\frac{n(n-1)}2\)。

\(\mathcal{Solution}\)

  • 欧姆定律:通过一段电路 \(AB\) 两端的电流为 \(\frac{\varphi_A-\varphi_B}{R_{AB}}\)。

  • 基尔霍夫电流定律:设流入电流为正,流出电流为负,则任意节点有 \(\sum I=0\)。

  其中 \(\varphi\) 表示电势(本题中可以粗暴地理解作“高度”,想象成水流从高往低流)。对兔子这种初中电学还没学完的蒟蒻极不友好。

  钦定 \(S\) 输出 \(1A\) 的电流,对于每个点,结合上两条定律,有:

\[\sum_{(u,v)\in E}\frac{\varphi_u-\varphi_v}{R_{uv}}=([u=S]-[u-T])A
\]

  但发现如果有解,那么每个 \(\varphi\) 加上同一常数仍是一组解,所以断定存在一个式子与其它 \(n-1\) 个线性相关。随便去掉一个式子,再钦定 \(\varphi_T=0\),就能解出 \(S\) 的电势 \(\varphi_S\)。由于 \(I=\frac{U}R=1A\),所以 \(\varphi_S\) 的数值就是等效电阻的数值。

\(\mathcal{Code}\)

#include <cstdio>
#include <iostream> const int MAXN = 100;
const double EPS = 1e-9;
int n, m, S, T;
double coe[MAXN + 5][MAXN + 5], I[MAXN + 5], U[MAXN + 5]; inline double abs_ ( const double x ) { return x < 0 ? -x : x; } inline void Gauss ( double A[MAXN + 5][MAXN + 5], double* B, double* X ) {
for ( int i = 1; i <= n; ++ i ) {
int p = i;
for ( int j = i + 1; j <= n; ++ j ) {
if ( abs_ ( A[j][i] ) > abs_ ( A[p][i] ) ) {
p = j;
}
}
if ( i ^ p ) std::swap ( A[i], A[p] ), std::swap ( B[i], B[p] );
for ( int j = i + 1; j <= n; ++ j ) {
double d = A[j][i] / A[i][i];
for ( int k = i; k <= n; ++ k ) A[j][k] -= d * A[i][k];
B[j] -= d * B[i];
}
}
for ( int i = n; i; -- i ) {
X[i] = B[i] / A[i][i];
for ( int j = i - 1; j; -- j ) B[j] -= A[j][i] * X[i];
}
} int main () {
freopen ( "electric.in", "r", stdin );
freopen ( "electric.out", "w", stdout );
scanf ( "%d %d %d %d", &n, &m, &S, &T );
for ( int i = 1; i < n; ++ i ) I[i] = ( i == S ) - ( i == T );
for ( int i = 1, u, v, t; i <= m; ++ i ) {
scanf ( "%d %d %d", &u, &v, &t );
double r = 1.0 / t;
if ( u < n ) coe[u][u] += r, coe[u][v] -= r;
if ( v < n ) coe[v][v] += r, coe[v][u] -= r;
}
coe[n][T] = 1;
Gauss ( coe, I, U );
printf ( "%.2f\n", U[S] );
return 0;
}

\(\mathcal{Details}\)

  高消记得换系数行的时候顺便换值啊……这种错查了快 \(2min\) qwq……

Solution -「LOCAL」解析电车的更多相关文章

  1. Solution -「LOCAL」二进制的世界

    \(\mathcal{Description}\)   OurOJ.   给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...

  2. Solution -「LOCAL」大括号树

    \(\mathcal{Description}\)   OurTeam & OurOJ.   给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...

  3. Solution -「LOCAL」过河

    \(\mathcal{Description}\)   一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...

  4. Solution -「LOCAL」Drainage System

    \(\mathcal{Description}\)   合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...

  5. Solution -「LOCAL」Burning Flowers

      灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\)   给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...

  6. Solution -「LOCAL」画画图

    \(\mathcal{Description}\)   OurTeam.   给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...

  7. Solution -「LOCAL」ZB 平衡树

    \(\mathcal{Description}\)   OurOJ.   维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...

  8. Solution -「LOCAL」舟游

    \(\mathcal{Description}\)   \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...

  9. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

随机推荐

  1. JS 利用新浪接口通过IP地址获取当前所在城市

    <html xmlns="http://www.w3.org/1999/xhtml"><head runat="server">< ...

  2. javascript错误类型

    ECMA-262 定义了下列 7 种错误类型,简单说明如下: Error:普通异常.通常与 throw 语句和 try/catch 语句一起使用. 利用属性 name 可以声明或了 解异常的类型,利用 ...

  3. centos7 配置登录前和登录信息内容

    登录之前提示信息: 登录之后提示信息: 上述中,只需修改对应的文件即可. 登录之前: vi /etc/issue 登录之后: vi /etc/motd 补充:将文件内容清空的方法,不是删除. 在前面文 ...

  4. Python爬取中国知网文献、参考文献、引证文献

    前两天老师派了个活,让下载知网上根据高级搜索得到的来源文献的参考文献及引证文献数据,网上找了一些相关博客,感觉都不太合适,因此特此记录,希望对需要的人有帮助. 切入正题,先说这次需求,高级搜索,根据中 ...

  5. SpringCloud的Config应用

    一.简介 ***应用程序先注册到注册中心,在注册中心根据guli-config服务的名字找到配置中心,然后在配置中心根据配置从github加载基本配置. 二.配置中心(服务端,可以部署集群) 1.依赖 ...

  6. 乒乓球队比赛,甲队有abc三人,乙队有xyz三人。 抽签得出比赛名单:a不和x比,c不和x,z比, 利用集合求出比赛名单

    import java.util.HashMap; import java.util.Map; /** * 乒乓球队比赛,甲队有abc三人,乙队有xyz三人. * 抽签得出比赛名单:a不和x比,c不和 ...

  7. phpAdmin写webshell的方法

    一.常规导入shell的操作    创建数据表导出shell    CREATE TABLE `mysql`.`shadow9` (`content` TEXT NOT NULL );    INSE ...

  8. Cesium入门7 - Adding Terrain - 添加地形

    Cesium入门7 - Adding Terrain - 添加地形 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com ...

  9. 如何通俗地理解docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  10. 『无为则无心』Python函数 — 35、Python中的闭包

    目录 1.闭包的概念 2.实现一个闭包 3.在闭包中外函数把临时变量绑定给内函数 4.闭包中内函数修改外函数局部变量 5.注意: 6.练习: 1.闭包的概念 请大家跟我理解一下,如果在一个函数的内部定 ...