Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\)
Link.
有 \(n\) 个开关,初始时所有开关的状态为 \(0\)。给定开关的目标状态 \(s_1,s_2,\cdots,s_n\)。每次操作中会以正比于 \(p_i\) 的概率拨动开关 \(i\)。求开关达到目标状态的期望操作次数,对 \(998244353\) 取模。
\(n\le100\),\(\sum p\le5\times10^4\)。
\(\mathcal{Solution}\)
不妨令 \(p_i\) 为一次操作拨动 \(i\) 的概率。设 \(F(x)\) 为“\(i\) 次操作后开关是目标状态的概率”的 EGF,\(G(x)\) 为“\(i\) 次操作后回到全零状态的概率”的 EGF。考虑每个开关是否需要被拨动,得到
\]
代入 \(s_i=0~(i=1,2,\dots,n)\) 即得
\]
设 \(H(x)\) 为“\(i\) 次操作第一次使开关达到目标状态的概率”的 EGF。\(F\) 和 \(H\) 的区别在于是否接受“多次回到目标状态”,而“回到目标状态”正对应着 \(G\) 的意义,它们可以建立等量关系
\Rightarrow~~~~H=F\cdot G^{-1}
\]
故欲求期望 \(H'(1)\),仅需求 \((F\cdot G^{-1})'(1)\)。
设 \(u_{1-i}=2^n[e^{ix}]F(x)\),\(v_{1-i}=2^n[e^{ix}]G(x)\),则有
u_{1-i}&=2^n[e^{ix}]F(x)\\
&=[x^{i}]\prod_{j=1}^n(x^{p_j}+(-1)^{s_j}x^{-p_j})\\
&=[x^{i-1}]\prod_{j=1}^n(1+(-1)^{s_j}x^{-2p_j})\\
&=[x^{1-i}]\prod_{j=1}^n(1+(-1)^{s_j}x^{2p_j})
\end{aligned}
\]
同理地,对于 \(v_i\):
v_{1-i}&=2^n[e^{ix}]G(x)\\
&=\cdots\\
&=[x^{1-i}]\prod_{j=1}^n(1+x^{2p_j})
\end{aligned}
\]
在此基础上考虑所求答案:
\]
注意 \(e^{ix}=\operatorname{EGF}\lang 1,i,i^2,\cdots\rang\),将其统一转为 \(\operatorname{OGF}\lang 1,i,i^2,\cdots\rang=\frac{1}{1-ix}\),此时 \(H\) 的含义变为概率的 OGF。可以得到
H(x)&=\frac{\sum_i\frac{u_{1-i}}{1-ix}}{\sum_i\frac{v_{1-i}}{1-ix}}\\
&=\frac{(1-x)\sum_i\frac{u_{1-i}}{1-ix}}{(1-x)\sum_i\frac{v_{1-i}}{1-ix}}\\
&=\frac{u_0+\sum_{i\not=1}u_{1-i}\frac{1-x}{1-ix}}{v_0+\sum_{i\not=1}v_{1-i}\frac{1-x}{1-ix}}
\end{aligned}
\]
记 \(s(x)=u_0+\sum_{i\not=1}u_{1-i}\frac{1-x}{1-ix}\),\(t(x)=v_0+\sum_{i\not=1}v_{1-i}\frac{1-x}{1-ix}\)。由于有 \(\left(\frac{1-x}{1-ix}\right)'(1)=\frac{1}{1-i}\),可知
t'(1)=\sum_{i\not=1}\frac{v_{1-i}}{1-i}
\]
而显然又有 \(s(1)=t(1)=u_0=v_0=1\),则对于 \(H'(1)\):
H'(1)&=\frac{s'(1)t(1)-s(1)t'(1)}{t^2(1)}\\
&=s'(1)-t'(1)\\
&=\sum_{i\not=1}\frac{u_{1-i}-v_{1-i}}{i-1}\\
&=\sum_{i>0}\frac{v_i-u_i}{i}
\end{aligned}
\]
故仅需求出 \(u_i\) 和 \(v_i\),有意义的 \(i\) 仅有 \(\mathcal O(\sum p)\)(其中 \(p\) 即输入)个,背包一下,即可 \(\mathcal O(nm)\) 求解。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MAXN = 100, MAXS = 5e4, MOD = 998244353;
int n, s[MAXN + 5], p[MAXN + 5], u[MAXS + 5], v[MAXS + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
int main() {
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &s[i] );
int sp = 0;
rep ( i, 1, n ) scanf( "%d", &p[i] ), sp += p[i];
u[0] = v[0] = 1;
rep ( i, 1, n ) per ( j, sp, p[i] ) {
u[j] = ( s[i] ? sub : add )( u[j], u[j - p[i]] );
v[j] = add( v[j], v[j - p[i]] );
}
// rep ( i, 0, sp ) printf( "%d%c", u[i], i ^ sp ? ' ' : '\n' );
// rep ( i, 0, sp ) printf( "%d%c", v[i], i ^ sp ? ' ' : '\n' );
int ans = 0;
rep ( i, 1, sp ) {
ans = add( ans, mul( mpow( i << 1, MOD - 2 ), sub( v[i], u[i] ) ) );
}
printf( "%d\n", mul( ans, sp ) );
return 0;
}
Solution -「ZJOI 2019」「洛谷 P5326」开关的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷5290」「LOJ3052」「十二省联考 2019」春节十二响【启发式合并】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 给定一棵树,每次选取树上的一个点集,要求点集中的每个点不能是另一个点的祖先,选出点集的代价为点集中权值最大点的权值,问将所有点都选一遍的最小代价为 ...
- 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- spring cloud --- config 配置中心 [本地、git获取配置文件]
spring boot 1.5.9.RELEASE spring cloud Dalston.SR1 1.前言 spring cloud config 配置中心是什么? 为了统一管理配 ...
- Linux上天之路系列目录
Linux上天之路系列目录 Linux上天之路(一)之Linux前世今生 Linux上天之路(二)之Linux安装 Linux上天之路(三)之Linux系统目录 Linux上天之路(四)之Linux界 ...
- 灵雀云Kube-OVN进入CNCF沙箱,成为CNCF首个容器网络项目
昨日,云原生计算基金会 (CNCF) 宣布由灵雀云开源的容器网络项目Kube-OVN 正式进入 CNCF 沙箱(Sandbox)托管.这是全球范围内首个被CNCF纳入托管的开源CNI网络项目,也是国内 ...
- nmap高级用法
nmap在信息收集中起着很大的作用,今天我来总结一些nmap常用的一些命令 常用探测主机存活方式 1.-sP:进行ping扫描 打印出对ping扫描做出响应的主机,不做进一步测试(如端口扫描或者操作系 ...
- java日志打印使用指南
一.简介 日志打印是java代码开发中不可缺少的重要一步. 日志可以排查问题,可以搜集数据 二.常用日志框架 比较常用的日志框架就是logback, 一些老项目会使用log4j,他们用的都是slf4j ...
- dgv 自动换行
//设置自动换行 dgv.DefaultCellStyle.WrapMode = DataGridViewTriState.True; //设置自动调整高度 dgv.AutoSizeRowsMode ...
- 【小记录】android下opencv的cv::dft()函数,CPU版本与opencl版本的性能相差16倍
cv::dft 相差15.9倍 cpu版本 单次调用 0.029448 毫秒 opencl版本 单次调用 0.468688 毫秒 差别仅 ...
- 阐述JDBC操作数据库的步骤
1. 加载驱动. Class.forName("oracle.jdbc.driver.OracleDriver"); (注意:加载驱动在JDBC 4.0中是可以省略的,自动从类路径 ...
- Python实现查询12306火车票信息
例子来源于马哥的公众号,看了几遍,有些地方存在些疑问,然后就自己查找些资料,重写的一下,但是对于获取到的信息,并不能有效的解析出来,而且对于中文字符处理,并不是很好,请大神指教下!谢过! 1.接口设置 ...
- 集合框架-LinkedList集合练习(堆栈和队列)
1 package cn.itcast.p2.linkedlist.test; 2 3 import java.util.LinkedList; 4 5 /* 6 * 请使用LinkedList来模拟 ...