数据结构与算法(python版)
案例程序:
def sumOfN(n):
"""累计求和"""
theSum = 0
for i in range(1,n+1):
theSum = theSum+i
return theSum
二、计算资源指标
三、Python中有一个time模块,可以获取计算机系统当前时间

# 使用timeit模块对函数计时
# 创建一个timer对象,指定需要反复运行的语句 from timeit import Timer t1 = Timer("test1()", "from __main__ import test1")
print("concat %f seconds\n" % (t1.timeit(number=1000))) t2 = Timer("test2()", "from __main__ import test2")
print("append %f seconds\n" % (t2.timeit(number=1000)))
四、数量级函数 Order of Magnitude,大O表示法
1、基本操作数量函数T(n)的精确值并不是特别重要,重要的是T(n)中起决定性因素的主导部分用动态的眼光看,就是当问题规模增大的时候,
T(n)中的一些部分会盖过其它部分的贡献;

算法案例:“变位词”判断问题
所谓“变位词”是指两个词之间存在组成字母的
重新排列关系
如:heart和earth,python和typhon
为了简单起见,假设参与判断的两个词仅由小写
字母构成,而且长度相等 def anagramSolution2(s1, s2):
"""将字符串变成列表并排序,然后逐一对比"""
alist1 = list(s1)
alist2 = list(s2) alist1.sort()
alist2.sort()
pos = 0
matches = True
while pos < len(s1) and matches:
if alist1[pos] == alist2[pos]:
pos = pos + 1
else:
matches = False
return matches
# 使用timeit模块对函数计时
# 创建一个timer对象,指定需要反复运行的语句 from timeit import Timer t1 = Timer("test1()", "from __main__ import test1")
print("concat %f seconds\n" % (t1.timeit(number=1000))) t2 = Timer("test2()", "from __main__ import test2")
print("append %f seconds\n" % (t2.timeit(number=1000)))
五、python数据类型-线性结构:list、dict、stack、queue、Deque、UnorderedList、OrderedList、


stack的实现:
class Stack:
"""简单实现的一个栈"""
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop() #这里的:不同的方法,有不同的操作
# def push(self, item):
# self.items.insert(0,item)
# def pop(self):
# return self.items.pop(0) def peek(self):
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
class Stack:
"""简单实现的一个栈"""
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop() #这里的
# def push(self, item):
# self.items.insert(0,item)
# def pop(self):
# return self.items.pop(0) def peek(self):
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def parChecker(symbolString):
s = Stack()
balanced = True
index = 0
while index < len(symbolString) and balanced:
symbol = symbolString[index]
if symbol == "(":
s.push(symbol)
else:
if s.isEmpty():
balanced = False
else:
s.pop()
index = index + 1
if balanced and s.isEmpty():
return True
else:
return False
print (parChecker('((((()))))'))
通用的写发 包含[{(
def parChecker(symbolString):
s = Stack()
balanced = True
index = 0
while index < len(symbolString) and balanced:
symbol = symbolString[index]if symbol in "({[":
s.push(symbol)
else:
if s.isEmpty():
balanced = False
else:
top=s.pop()
if not matches(top,symbol):
balanced = False
index = index + 1
print('s', s)
if balanced and s.isEmpty():
return True
else:
return False def matches(open, close):
opens = "[({"
closers = "]})"
return opens.index(open) == closers.index(close)
实用场景
栈的应用二:进制之间的转化
基本概念:二进制:二进制是计算机原理中最基本的概念,作为组成计算机最基本部件的逻辑门电路,其输入和输出
均仅为两种状态:0和1;
十进制:人类传统文化中最基本的数值概念,如果没有进制之间的转换,人们跟计算机的交互
会相当的困难;
所谓的“进制”,就是用多少个字符来表示整数:十进制是0~9这十个数字字符,二进制是0、1两
个字符
十进制转换为二进制,采用的是“除以2求余数”的算法


十进制转化为2进制 案例
def divideBy2(decNumber):
remstack =Stack()
while decNumber>0:
rem=decNumber%2 #求余数
remstack.push(rem)
decNumber = decNumber//2 # 整数部分
binString = ""
while not remstack.isEmpty():
binString=binString+str(remstack.pop())
return binString
print (divideBy2(256))
十进制转换为十六以下任意进制
def baseConverter(decNumber,base):
digits="0123456789ABCDEF"
remstack =Stack()
while decNumber>0:
rem=decNumber%base #余数
remstack.push(rem)
decNumber = decNumber//base # 整数部分
newString = ""
while not remstack.isEmpty():
newString=newString+digits[remstack.pop()]
return newString
print (baseConverter(256,2))
栈的应用三:表达式应用


def infixToPostfix(infixexpr):
prec = {}
prec["*"] = 3 # 记录操作符优先级
prec["/"] = 3
prec["+"] = 2
prec["-"] = 2
prec["("] = 1
opStack = Stack()
postfixList = []
tokenList = infixexpr.split() # 解析表达式到单词列表
for token in tokenList:
if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":
postfixList.append(token)
elif token == "(":
opStack.push(token)
elif token == ")":
topToken = opStack.pop()
while topToken != '(':
postfixList.append(topToken)
topToken = opStack.pop()
else: # 操作符
while (not opStack.isEmpty()) and (prec[opStack.peek()] >= prec[token]):
postfixList.append((opStack.pop()))
opStack.push(token)
while not opStack.isEmpty():
postfixList.append(opStack.pop()) # 操作符
return " ".join(postfixList) # 合成后缀表达式字符串
七:队列Queue:新加入的数据项必须在数据集末尾等待,而等待时间最长的数据项则是队首;(FIFO:First-in-first-out)先进先出
应用场景:计算机科学中队列的例子:键盘缓冲❖键盘敲击并不马上显示在屏幕上需要有个队列性质的缓冲区,将尚未显示的敲击
字符暂存其中,
特性:队列的先进先出性质则保证了字符的输入和显示次序一致性。
Queue():创建一个空队列对象,返回值为Queue对象;
enqueue(item):将数据项item添加到队尾,无返回值;
dequeue():从队首移除数据项,返回值为队首数据项,队列被修改;
isEmpty():测试是否空队列,返回值为布尔值
size():返回队列中数据项的个数。
class Queue:
def __init__(self):
self.items = [] def isEmpty(self):
return self.items == [] def enqueue(self, item):
# 队列首段加选项
self.items.insert(0, item) def dequeue(self):
# 队列尾端出
return self.items.pop() def size(self):
return len(self.items)
def hotPotato(namelist, num):
simqueue = Queue()
for name in namelist:
simqueue.enqueue(name)
while simqueue.size() > 1:
for i in range(num):
simqueue.enqueue(simqueue.dequeue())
simqueue.dequeue()
return simqueue.dequeue()
五、list:最常用的是:按索引取值和赋值(v =a[i], a[i]= v)、线性结构:【】
四种生成向list里面加数据的方式
def test1():
l = []
for i in range(1000):
l = l + [i] def test2():
l = []
for i in range(1000):
l.append(i) def test3():
'列表推导式'
l = [i for i in range(1000)] def test4():
l = list(range(1000))


数据结构与算法(python版)的更多相关文章
- 北京大学公开课《数据结构与算法Python版》
之前我分享过一个数据结构与算法的课程,很多小伙伴私信我问有没有Python版. 看了一些公开课后,今天特向大家推荐北京大学的这门课程:<数据结构与算法Python版>. 课程概述 很多同学 ...
- 【数据结构与算法Python版学习笔记】引言
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计 ...
- 学习笔记:[算法分析]数据结构与算法Python版[基本的数据结构-上]
线性结构Linear Structure ❖线性结构是一种有序数据项的集合,其中 每个数据项都有唯一的前驱和后继 除了第一个没有前驱,最后一个没有后继 新的数据项加入到数据集中时,只会加入到原有 某个 ...
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
- 数据结构与算法Python版 熟悉哈希表,了解Python字典底层实现
Hash Table 散列表(hash table)也被称为哈希表,它是一种根据键(key)来存储值(value)的特殊线性结构. 常用于迅速的无序单点查找,其查找速度可达到常数级别的O(1). 散列 ...
- 【数据结构与算法Python版学习笔记】算法分析
什么是算法分析 算法是问题解决的通用的分步的指令的聚合 算法分析主要就是从计算资源的消耗的角度来评判和比较算法. 计算资源指标 存储空间或内存 执行时间 影响算法运行时间的其他因素 分为最好.最差和平 ...
- 【数据结构与算法Python版学习笔记】递归(Recursion)——定义及应用:分形树、谢尔宾斯基三角、汉诺塔、迷宫
定义 递归是一种解决问题的方法,它把一个问题分解为越来越小的子问题,直到问题的规模小到可以被很简单直接解决. 通常为了达到分解问题的效果,递归过程中要引入一个调用自身的函数. 举例 数列求和 def ...
- 【数据结构与算法Python版学习笔记】基本数据结构——列表 List,链表实现
无序表链表 定义 一种数据项按照相对位置存放的数据集 抽象数据类型无序列表 UnorderedList 方法 list() 创建一个新的空列表.它不需要参数,而返回一个空列表. add(item) 将 ...
- 【数据结构与算法Python版学习笔记】树——利用二叉堆实现优先级队列
概念 队列有一个重要的变体,叫作优先级队列. 和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的. 优先级最高的元素在最前,优先级最低的元素在最后. 实现优先级队列的经典方法是使 ...
- 【数据结构与算法Python版学习笔记】树——相关术语、定义、实现方法
概念 一种基本的"非线性"数据结构--树 根 枝 叶 广泛应用于计算机科学的多个领域 操作系统 图形学 数据库 计算机网络 特征 第一个属性是层次性,即树是按层级构建的,越笼统就越 ...
随机推荐
- P2782 友好城市(最长不下降子序列)
题目描述 有一条横贯东西的大河,河有笔直的南北两岸,岸上各有位置各不相同的$N$个城市.北岸的每个城市有且仅有一个友好城市在南岸,而且不同城市的友好城市不相同.每对友好城市都向政府申请在河上开辟一条直 ...
- ConcurrentSkipListSet - 秒懂
疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 面试必备 + 面试必备 [博客园总入口 ] 疯狂创客圈 经典图书 : <Sprin ...
- google protobuf的原理和思路提炼
之前其实已经用了5篇文章完整地分析了protobuf的原理.回过头去看,感觉一方面篇幅过大,另一方面过于追求细节和源码,对protobuf的初学者并不十分友好,因此这篇文章将会站在"了解.使 ...
- 环境安装——JDK安装
@ 目录 开发环境-JDK安装 1. 下载地址 2. 安装JDK 3. 配置系统环境 开发环境-JDK安装 无论在我们开始学习Java或者入职第一天安装环境,这个你都是必备滴!下面是下载和安装JDK的 ...
- C#WebApi的创建与发布
VS中新建项目-Web-ASP.NET Web应用程序 然后确定,选择空模版就可以了,勾上Webapi(也可以选择webapi模板,这样生成的文件比较多) 添加好之后Controllers和Model ...
- 番外篇:使用nssm工具将ES、Kibana、Logstash或者其他.bat文件部署为Windows后台服务的方法
使用NSSM工具安装bat文件为Windows服务 nssm是一个可以把bat批处理文件部署为Windows服务的小工具.例如很多.net项目可能还是在Windows服务器上面跑的,但是很多组件只提供 ...
- 关于WLS2中Ubuntu启用SSH远程登录功能,基于Xshell登录,支持Root
背景介绍 虽然WSL2提供了非常便利的访问Ubuntu目录的形式,但是仍然我们需要通过一个工具,比如XSHELL来实现对Ubuntu的SSH登录. 获取并安装Xshell 7 目前Xshell已经更新 ...
- 16、编译安装ansible
16.1.python版本说明: Ansible是一种批量部署工具,现在运维人员用的最多的三种开源集中化管理工具有:puppet,saltstack,ansible,各有各的优缺点, 其中saltst ...
- Pygame 入门基本指南
最近正在利用 Python 制作一个小游戏,但对于 Pygame 不熟悉,故在学习的过程记录相关知识点 Pygame 中文文档下载:Here Pygame第1-1课:入门 什么是Pygame? Pyg ...
- 使用CI/CD工具Github Action发布jar到Maven中央仓库
之前发布开源项目Payment Spring Boot到Maven中央仓库我都是手动执行mvn deploy,在CI/CD大行其道的今天使用这种方式有点"原始".于是我一直在寻求一 ...

