首先突破口肯定在三角形不交,考虑寻找一些性质。

  • 引理一:两个三角形不交当且仅当存在一个三角形的一条边所在直线将两个三角形分为异侧

证明可以参考:三角形相离充要条件,大致思路是取两个三角形重心连线,将其中一个三角形延重心连线平移两三角形总会相交,同时也能根据相交情况找到一条这样的直线。

  • 引理二:若三角形任意三点不共线,则两个三角形不交当且仅当存在两条内公切线

根据引理一,将所得到的直线平移并旋转一定能得到两条内公切线。

直接借助引理一不好将问题分割,考虑利用引理二。

注意到一对不相交的三角形公切线数量为常数,于是枚举公切线的两个切点,问题转化为上下两个半平面内找出另外两种颜色的方案数,可以直接暴力统计。

发现同一种方案在会被四个有序切点对统计到,因此最后答案需要除 \(4\),复杂度 \(\mathcal{O}(n ^ 3)\).

考虑优化,枚举一个点,将其他所有点极角排序,半平面的颜色数按照极角排序枚举可以双指针优化,复杂度 \(\mathcal{O}(n ^ 2 \log n)\).

「JOISC 2014 Day4」两个人的星座的更多相关文章

  1. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  2. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  3. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  4. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  5. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  6. loj2880「JOISC 2014 Day3」稻草人

    题目链接:bzoj4237 ​ loj2880 考虑\(cdq\)分治,按\(x\)坐标排序,于是问题变成统计左下角在\([l,mid]\),右上角在\([mid+1,r]\)的矩形数量 我们先考虑固 ...

  7. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  8. @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...

  9. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

随机推荐

  1. 洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)

    题目描述 The streets of Byte City form a regular, chessboardlike network - they are either north-south o ...

  2. MCMC using Hamiltonian dynamics

    目录 算法 符号说明 Hamilton方程 物理解释 一些性质 可逆 Reversibility H的不变性 保体积 Volume preservation 辛 Symplecticness 离散化H ...

  3. Linux时间与日期

    date date:显示当前时间[年月日时分秒] date +%[选项] Y:年 m:月 d:日 H:时 M:分 S:秒 date "+%Y-%m-%d":格式化显示,格式可自定. ...

  4. 基于Spring MVC + Spring + MyBatis的【人事管理系统】

    资源下载:https://download.csdn.net/download/weixin_44893902/33163160 一.语言和环境 实现语言:JAVA语言 环境要求:IDEA/Eclip ...

  5. RabbitMQ基础教程系列

    Ubuntu16.04下,erlang安装和rabbitmq安装步骤 Ubuntu16.04下,rabbimq集群搭建 C# .net 环境下使用rabbitmq消息队列 .net core使用rab ...

  6. ModelForm has no model class specified

    未指定模型类,错误发生在把model拼写错误 来自为知笔记(Wiz)

  7. OSPF路由协议详解

    OSPF:开放式最短路径优先协议无类别链路状态路由协议,组播更新224.0.0.5/6:跨层封装到三层,协议号89:基于拓扑工作,故更新量大-----需要结构化部署–区域划分.地址规划触发更新.每30 ...

  8. [ bootstrap ] 图片内容占用padding的范围,如何解决?

    问题描述: 从效果图看到,图片内容占据了padding的范围,怎么解决呢? html代码 <div class="container"> <div class=& ...

  9. PaddleOCRSharp,2022年,你来的晚了些,一款.NET离线使用的高精度OCR

    一款免费且离线的.NET使用的OCR,爱你又恨你!恨你来的太晚了. PaddleOCRSharp 本项目是一个基于百度飞桨的PaddleOCR的C++代码修改并封装的.NET的类库.包含文本识别.文本 ...

  10. python+selenium 元素定位--iframe

    1. 一般webdriver要操作页面元素需要在Top Window的状态下,如下: 2.当浏览器显示iframe时,用正常的元素定位是没有效果的,需要将页面装换到iframe下再对页面元素进行操作 ...