黎曼曲面Riemann Surface

A Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, "sheets." These sheets can have very complicated structures and interconnections (Knopp 1996, pp. 98-99). Riemann surfaces are one way of representing multiple-valued functions; another is branch cuts. The above plot shows Riemann surfaces for solutions of the equation

黎曼曲面是一种类似于曲面的结构,它覆盖了多个,通常是无限多个的“片”。这些片可以有非常复杂的结构和相互连接(Knopp 1996,pp.98-99)。Riemann曲面是表示多值函数(功能)的一种方法;另一种是分支切割。上图显示了方程解的黎曼曲面。

其中d=2, 3, 4, and 5, where w(z)  is the Lambert W-function (M. Trott).
The Riemann surface  S of the function field K is the set of nontrivial
discrete valuations on K. Here, the set  S corresponds to the ideals of the ring  A of K integers of  K over C(z) . ( A consists of the elements
of K that are roots of monic polynomials over C(z) .) Riemann surfaces provide a geometric visualization of functions elements and their analytic
continuations.
函数(功能)域K的Riemann曲面S是K上的一组非平凡离散赋值集,这里的S对应于C(z)上K的整数环A的理想。(A由K的元素组成,这些元素是C[z]上的一元多项式的根)。Riemann曲面提供了函数(功能)元素及其解析连续性的几何可视化。
Schwarz proved at the end of nineteenth century that the automorphism
group of a compact Riemann surface of genus g>=2 is finite, and Hurwitz (1893) subsequently showed that its order is at most  84(g-1) (Arbarello et
al. 1985, pp. 45-47; Karcher and Weber 1999, p. 9). This bound is attained for infinitely many g, with the smallest  of g such an extremal surface being 3 (corresponding to the Klein quartic). However, it is also known that there are infinitely many genera for which the bound 84(g-1) is not attained (Belolipetsky 1997, Belolipetsky and Jones).
Schwarz在十九世纪末证明了亏格g>=2的紧致黎曼曲面的自同构群是有限的,Hurwitz(1893)随后证明了它的阶至多为84(g-1)(Arbarello等人。1985年,第45-47页;卡彻和韦伯1999年,第9页)。对于无穷多的g,这个界是得到的,并且这样一个极值曲面的最小g是3(对应于Klein四次曲线)。然而,我们也知道,有无限多的属没有达到84(g-1)的界限(belloipetsky 1997,belloipetsky和Jones)。

 

黎曼曲面Riemann Surface的更多相关文章

  1. 普林斯顿数学指南(第一卷) (Timothy Gowers 著)

    第I部分 引论 I.1 数学是做什么的 I.2 数学的语言和语法 I.3 一些基本的数学定义 I.4 数学研究的一般目的 第II部分 现代数学的起源 II.1 从数到数系 II.2 几何学 II.3 ...

  2. Geometry Surface of OpenCascade BRep

    Geometry Surface of OpenCascade BRep eryar@163.com 摘要Abstract:几何曲面是参数表示的曲面 ,在边界表示中其数据存在于BRep_TFace中, ...

  3. OpenCASCADE构造一般曲面

    OpenCASCADE构造一般曲面 eryar@163.com Abstract. 本文主要介绍常见的曲面如一般柱面(拉伸曲面).旋转面在OpenCASCADE中的构造方法,由此思考一般放样算法的实现 ...

  4. How to do Mathematics

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...

  5. 流形(Manifold)初步【转】

    转载自:http://blog.csdn.net/wangxiaojun911/article/details/17076465 欧几里得几何学(Euclidean Geometry) 两千三百年前, ...

  6. 流形(Manifold)初步

    原文链接 欧几里得几何学(Euclidean Geometry) 两千三百年前,古希腊数学家欧几里得著成了<几何原本>,构建了被后世称为“欧几里得几何学”的研究图形的方法.欧几里得创立了当 ...

  7. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  8. Topology and Geometry in OpenCascade-Face

    Topology and Geometry in OpenCascade-Face eryar@163.com 摘要Abstract:本文简要介绍了几何造型中的边界表示法(BRep),并结合程序说明O ...

  9. Open Cascade DataExchange IGES

    Open Cascade DataExchange IGES eryar@163.com 摘要Abstract:本文结合OpenCascade和Initial Graphics Exchange Sp ...

随机推荐

  1. hdu4503 概率

    题意: 湫湫系列故事--植树节                                         Time Limit: 1000/500 MS (Java/Others) Memory ...

  2. 路由器逆向分析------Running Debian MIPS Linux in QEMU

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/70176583 下面的文章内容主要参考英文博客<Running Debian ...

  3. Python 图片转字符图

    pip install Image argparse pillow from PIL import Image import argparse #命令行输入参数处理 parser = argparse ...

  4. R3获取kernel32地址

    获取Kernel32地址 如果是搞PE变形或者PE重构,再或者代码注入,很多时候我们要动态获取Loadlibrary()以及GetPeocAddress()两个函数的地址,通过这两个函数再动态获取其他 ...

  5. MFC ListControl用法合集

    以下未经说明,listctrl 默认view 风格为report ------------------------------------------------------------------- ...

  6. Andrew Ng机器学习算法入门(十):过拟合问题解决方法

    在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?

  7. Day007 递归

    递归 定义 ​ A方法调A方法!就是自己调自己 作用 ​ 利用递归可以用简单的程序来解决一些复杂的问题.它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程 ...

  8. TypeScript 中限制对象键名的取值范围

    当我们使用 TypeScript 时,我们想利用它提供的类型系统限制代码的方方面面,对象的键值,也不例外. 譬如我们有个对象存储每个年级的人名,类型大概长这样: type Students = Rec ...

  9. python基础之字典、集合

    一.字典(dictionary) 作用:存多个值,key-value存取,取值速度快 定义:key必须是不可变类型,value可以是任意类型 字典是一个无序的,可以修改的,元素呈键值对的形式,以逗号分 ...

  10. mysql开启远程访问和oracl用户锁定问题

    开启mysql远程访问 Grant all privileges on *.* to 'root'@'%' identified by 'root'; Flush privileges; oracl锁 ...