MySQL的Limit 性能差?真的不能再用了?
首先说明一下MySQL的版本:
mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17 |
+-----------+
1 row in set (0.00 sec)mysql> select version();+-----------+| version() |+-----------+| 5.7.17 |+-----------+1 row in set (0.00 sec)
表结构:
mysql> desc test;
+--------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------------+------+-----+---------+----------------+
| id | bigint(20) unsigned | NO | PRI | NULL | auto_increment |
| val | int(10) unsigned | NO | MUL | 0 | |
| source | int(10) unsigned | NO | | 0 | |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)
id为自增主键,val为非唯一索引。
灌入大量数据,共500万:
mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
| 5242882 |
+----------+
1 row in set (4.25 sec)
我们知道,当limit offset rows中的offset很大时,会出现效率问题:
mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id | val | source |
+---------+-----+--------+
| 3327622 | 4 | 4 |
| 3327632 | 4 | 4 |
| 3327642 | 4 | 4 |
| 3327652 | 4 | 4 |
| 3327662 | 4 | 4 |
+---------+-----+--------+
5 rows in set (15.98 sec)
为了达到相同的目的,我们一般会改写成如下语句:
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id | val | source | id |
+---------+-----+--------+---------+
| 3327622 | 4 | 4 | 3327622 |
| 3327632 | 4 | 4 | 3327632 |
| 3327642 | 4 | 4 | 3327642 |
| 3327652 | 4 | 4 | 3327652 |
| 3327662 | 4 | 4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)
时间相差很明显。
为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:
- 查询到索引叶子节点数据。
- 根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。
类似于下面这张图:
image
像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。
肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:
image
其实我也想问这个问题。
证实
下面我们实际操作一下来证实上述的推论:
为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。
我只能通过间接的方式来证实:
InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5) b>之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;+---------+-----+--------+---------+| id | val | source | id |+---------+-----+--------+---------+| 3327622 | 4 | 4 | 3327622 || 3327632 | 4 | 4 | 3327632 || 3327642 | 4 | 4 | 3327642 || 3327652 | 4 | 4 | 3327652 || 3327662 | 4 | 4 | 3327662 |+---------+-----+--------+---------+5 rows in set (0.38 sec)
可以看出,目前buffer pool中没有关于test表的数据页。
mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id | val | source |
+---------+-----+--------+
| 3327622 | 4 | 4 |
| 3327632 | 4 | 4 |
| 3327642 | 4 | 4 |
| 3327652 | 4 | 4 |
| 3327662 | 4 | 4 |
+---------+-----+--------+
5 rows in set (26.19 sec)
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY | 4098 |
| val | 208 |
+------------+----------+
2 rows in set (0.04 sec)
可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。
`select * from test a inner join (select id from test where val=4 limit 300000,5)`` b>为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。
mysqladmin shutdown
/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
Empty set (0.03 sec)
运行sql:
mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id | val | source | id |
+---------+-----+--------+---------+
| 3327622 | 4 | 4 | 3327622 |
| 3327632 | 4 | 4 | 3327632 |
| 3327642 | 4 | 4 | 3327642 |
| 3327652 | 4 | 4 | 3327652 |
| 3327662 | 4 | 4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.09 sec)
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY | 5 |
| val | 390 |
+------------+----------+
2 rows in set (0.03 sec)
我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。
而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。
遇到的问题
为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。
MySQL的Limit 性能差?真的不能再用了?的更多相关文章
- mysql的limit性能,数据库索引问题,dblog问题
mysql的limit性能,数据库索引问题,dblog问题,redis学习 继续学习. dblog实际上是把日志记录在另一个数据库里面. 问题1: 一张表定义了5个索引,但是sql语句中用到了3个有索 ...
- Mysql limit性能优化(小offset与大offset)
MySQL的优化是非常重要的.其他最常用也最需要优化的就是limit.MySQL的limit给分页带来了极大的方便,但数据量一大的时候,limit的性能就急剧下降. 同样是取10条数据 selec ...
- mysql limit 性能问题分析
问题重现 // todo 参考文章: MySQL 单表分页 Limit 性能优化 Scalable MySQL: Avoid offset for large tables 证明为什么用limit时, ...
- mysql limit性能问题
offset大的时候的比较 1. SELECT * FROM persons LIMIT 200000,10; 耗时0.109s 2. SELECT *FROM persons WHERE id> ...
- mysql中limit与in不能同时使用的解决方式.
mysql中limit与in不能同时使用的解决方式. 分类: MySQL2011-10-31 13:53 1277人阅读 评论(0) 收藏 举报 mysqlsubquery MySQL5.1中子查询是 ...
- mysql监控、性能调优及三范式理解
原文:mysql监控.性能调优及三范式理解 1监控 工具:sp on mysql sp系列可监控各种数据库 2调优 2.1 DB层操作与调优 2.1.1.开启慢查询 在My.cnf文件中添加如 ...
- 提高MySQL效率与性能的技巧
为查询缓存优化你的查询 大多数的MySQL服务器都开启了查询缓存.这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的.当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存 ...
- MySQL的limit优化
mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降 1.子查询优化法 先找出第一条数据,然后大 ...
- MYSQL分页limit速度太慢优化方法
http://www.fienda.com/archives/110 在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死 ...
随机推荐
- 老Python带你从浅入深探究Tuple
元组 Python中的元组容器序列(tuple)与列表容器序列(list)具有极大的相似之处,因此也常被称为不可变的列表. 但是两者之间也有很多的差距,元组侧重于数据的展示,而列表侧重于数据的存储与操 ...
- Introduction to x265 Rate Control Algorithm
The rate control in x265 is the same as x264's implementation, which is mostly empirical. It include ...
- Convert character array to string in MATLAB
Matlab提取特征值是经常要读取多个图片文件,把文件名保存在数组中后再读取会出错.从stackoverflow中找到如下解决方法: I've a M by N matrix, each cell c ...
- apiAutoTest:基于mitmproxy实现接口录制
目录 apiAutoTest 目前功能 重大更新(个人认为) 本次更新 契机 根本 如何录制 录制的用例 执行录制的用例 执行结果 实现源码 参考资料 apiAutoTest 先软文介绍下:apiAu ...
- Iterable 和 Iterator
可以被for循环输出的为iterable (可迭代对象) 可以被next()调用并不断返回下一个数据的对象为iterator迭代器(python一切皆对象) 数据流,无法知晓其终点,只能推过next不 ...
- 简单了解 MySQL 中相关的锁
本文主要是带大家快速了解 InnoDB 中锁相关的知识 为什么需要加锁 首先,为什么要加锁?我想我不用多说了,想象接下来的场景你就能 GET 了. 你在商场的卫生间上厕所,此时你一定会做的操作是啥?锁 ...
- [bug] C:error: initializer element is not constant
参考 http://codingdict.com/questions/45121
- [BD] Flume
什么是Flume 采集日志,存在HDFS上 分布式.高可用.高可靠的海量日志采集.聚合和传输系统 支持在日志系统中定制各类数据发送方,用于收集数据 支持对数据进行简单处理,写到数据接收方 组件 sou ...
- CentOS 7磁盘寻找不到,卡在sulogin,造成的开机失败问题--Error getting authority...
今天早上使用内网gitlab仓库的时候,发现页面无法打开,ssh也无法连接. 到机房接上显示器,发现如下错误: Error getting authority: Error initializing ...
- Lombok 插件安装和使用
引言 以前的 Java 项目中,充斥着太多毫无技术含量的代码,比如类属性的 getter/setter/toString 方法,还有就是异常处理.I/O 流的关闭操作等.这些样板代码虽然可以通过 ID ...