LOJ528 「LibreOJ β Round #4」求和
LOJ528 「LibreOJ β Round #4」求和
先按照最常规的思路推一波:
&\sum_{i=1}^n\sum_{j=1}^m\mu^2(\gcd(i,j))\\
=&\sum_{d=1}^{\min(n,m)}\mu^2(d)\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=d]\\
=&\sum_{d=1}^{\min(n,m)}\mu^2(d)\sum_{t=1}^{\min(n,m)}\mu(t)\lfloor \frac{n}{dt}\rfloor \lfloor \frac{m}{dt}\rfloor\\
=&\sum_{x=1}^{\min(n,m)}\lfloor \frac{n}{x}\rfloor \lfloor \frac{m}{x}\rfloor\sum_{d|x}\mu^2(d)\mu(\frac x d)
\end{aligned}
\]
然后后面这个东西一定是个积性函数,所以可以求出质数及其幂次上的的值,最后整除分块即可。
然后有另一种更为简洁的思路:
有反演公式 \(\mu^2(x)=\sum_{d^2|x}\mu(d)\)。
考虑证明。
若 \(x\) 为 \(\texttt{square_free numbers}\),即其无平方因子,则 \(d\) 只能取 \(1\),显然成立。
若 \(x\) 有 \(\texttt{square_free numbers}\),即其有平方因子,则左边显然为 \(0\)。
设其含有某个平方因子 \(p_k\)。
则对于所有的 \(d^2\),其中若 \(d\) 含有 \(p^2\),其对答案的贡献为 \(0\)。
否则 \(d\) 含有 \(p\) 或不含 \(p\),显然这两种情况的个数相同,且根据莫比乌斯函数的定义,对于答案的贡献恰好相反,也就是贡献和为 \(0\)。
所以有
&\sum_{i=1}^n\sum_{j=1}^m\mu^2(\gcd(i,j))\\
=&\sum_{i=1}^n\sum_{j=1}^m\sum_{d^2|\gcd(i,j)}\mu(d)\\
\end{aligned}
\]
然后你发现我们只需要找到 \(\gcd(i,j)\) 为完全平方数或其倍数的数,所以我们直接枚举就好了。
/*---Author:HenryHuang---*/
/*---Never Settle---*/
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const ll maxn=4e6+5;
const ll mod=998244353;
ll P;
ll pri[maxn],mu[maxn],p[maxn],cnt;
void init(){
mu[1]=1;
for(ll i=2;i<=P;++i){
if(!p[i]) pri[++cnt]=i,mu[i]=-1;
for(ll j=1;j<=cnt&&pri[j]*i<=P;++j){
p[pri[j]*i]=1;
if(i%pri[j]==0){
mu[pri[j]*i]=0;
break;
}
else mu[pri[j]*i]=-mu[i];
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
ll n,m;cin>>n>>m;
if(n<m) swap(n,m);P=sqrt(n+0.5);init();
ll ans=0;
for(ll i=1;1ll*i*i<=n;++i){
if(!mu[i]) continue;
ll x=i*i;
ans=(ll)(ans+mu[i]*(1ll*(n/x)%mod*((m/x)%mod))%mod+mod)%mod;
}
cout<<ans<<'\n';
return 0;
}
LOJ528 「LibreOJ β Round #4」求和的更多相关文章
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...
- loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...
- 「LibreOJ β Round #4」求和
https://loj.ac/problem/528 1 , d =1 μ(d)= (-1)^k , d=p1*p2*p3*^pk pi为素数 0 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
随机推荐
- 八、.net core(.NET 6)配置读取appsettings文件内容的通用功能
添加通用读取配置文件功能 在Wsk.Core.Package项目下,新增Microsoft.Extensions.Configuration包: 在启动项目下,设置appsettings.json属 ...
- GO学习-(12) Go语言基础之函数
Go语言基础之函数 函数是组织好的.可重复使用的.用于执行指定任务的代码块.本文介绍了Go语言中函数的相关内容. 函数 Go语言中支持函数.匿名函数和闭包,并且函数在Go语言中属于"一等公民 ...
- AI推理与Compiler
AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度 ...
- TensorFlow用法
TensorFlow用法 什么是TensorFlow TensorFlow是一个开源软件库,用于使用数据流图进行数值计算.图中的节点表示数学运算,而图的边缘表示流动的多维数据数组(张量).这种灵活的体 ...
- 【Java实现】剑指offer53.1——在排序数组中查找数字(LeetCode34:在排序数组中查找元素的起始位置)
序数组中查找元素的起始位置):思路分享 <剑指offer>题目和LeetCode主站本质是一样的,想要找到target数目,也需要找到左右边界 题目解析: 在一个排序数组中,找到targe ...
- vue给元素动态绑定样式
<div :style="{ color: activeColor, fontSize: fontSize + 'px' }"></div> data () ...
- 32.qt quick-模仿QQ登录界面实现3D旋转(Rotation、Flipable)
要想模仿QQ登录界面的3D旋转,我们需要学习Rotation和Flipable.由于没找到QQ的资源图,所以我们以两个图片为例模仿QQ的3D旋转,如下图所示: 最终效果如下所示: 1.Rotation ...
- Kubernetes集群安装
一.环境介绍 主机名 IP地址 master 192.168.0.100 node1 192.168.0.101 node2 192.168.0.102 1.1.操作系统: CensOS8.4.210 ...
- mybatis入“坑”第一步
一.导入坐标 要想通过maven创建一个简单的mybatis项目,首先需要的是要导入相关的坐标.需要导入的坐标如下: <dependencies> <!--mysql驱动坐标--&g ...
- Linux环境下安装配置vsftpd服务(三种认证模式)
一.FTP简介 文件传输协议(英文:File Transfer Protocol,缩写:FTP)是用于在网络上进行文件传输的一套标准协议.它工作于网络传输协议的应用层,使用客户/服务器模式,主要是用来 ...