Factorization
Factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x^2 – 4. Matrices possess many kinds of matrix factorizations.
Although integer factorization is a sort of inverse to multiplication, it is much more difficult algorithmically, a fact which is exploited in the RSA cryptosystem to implement public-key cryptography. Pierre de Fermat was unable to discover that the 6th Fermat number 1 + 2^32 is not a prime number.
log(2)=0.3, 20位二进制约6位六进制,32位10位,64位19位, 128位38位。两个8位二进制数相乘,可写成(a*16+b)*(c*16+b)=ac*256+bc*16*ab+bb. *256放在另一个寄存器里,*16分成两截,ab和bb各最多8位。
Manipulating expressions is the basis of algebra. Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E*F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler, and may thus offer some insight on the problem. But factorization is not always possible, and when it is possible, the factors are not always simpler. For example, x^10 - 1 = (x-1)*(x^9 + x^8 + ... + x + 1).
The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minutes of computer time indicates how successfully this problem has been attacked during the past fifteen years. (Erich Kaltofen, 1982) Nowadays, modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. 1000位十进制数有3322个二进制位。量子计算是质变,8个4096位寄存器,baremetal能且仅能分解整数是小量变。我是外行,我不知道4096根线现实不。
Yun, David Y.Y. (1976). On square-free decomposition algorithms SYMSAC '76 Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26–35.
Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.
没有一目了然的。search(github emcd123 PolynomialFactorization) 有用SageMath写的。到 cocalc 试了下:

结果不对。
SageMath is a free open-source mathematics software system. It builds on top of many existing packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers. SageMath-9.3-Installer-v0.6.3.exe 820.72 MB
SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It uses mpmath, which is a free Python library for real and complex floating-point arithmetic with arbitrary precision.
Combinatorics is the branch of mathematics studying the enumeration, combination, and permutation of sets of elements and the mathematical relations that characterize their properties. Mathematicians sometimes use the term "combinatorics" to refer to a larger subset of discrete mathematics that includes graph theory. search(Combinatorics fourier)
六级/考研单词: mathematics, invert, exploit, implement, prime, log, manipulate, algebra, equate, seldom, thereby, insight, compute, finite, moderate, nowadays, digit, tertiary, symposium, hardware, parcel, intelligible, arithmetic, arbitrary, graph

stackoverflow上有人说:把f(x)分解成因式就是找出f(x)=0的所有根。也许有些程序找到的不是1而是0.999999999。可x^4+1=0没有实数根啊。
Factorization的更多相关文章
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
- Factorization Machine因子分解机
隐因子分解机Factorization Machine[http://www. w2bc. com/article/113916] https://my.oschina.net/keyven/blog ...
- 关于NMF(Non-negative Matrix Factorization )
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- Factorization Machine
Factorization Machine Model 如果仅考虑两个样本间的交互, 则factorization machine的公式为: $\hat{y}(\mathbf{x}):=w_0 + \ ...
- 1103. Integer Factorization (30)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...
- Factorization Machines 学习笔记(三)回归和分类
近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- Matrix Factorization, Algorithms, Applications, and Avaliable packages
矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...
- Factorization Machines 学习笔记(四)学习算法
近期学习了一种叫做 Factorization Machines(简称 FM)的算法.它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- Factorization Machines 学习笔记(二)模型方程
近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...
- 分解机(Factorization Machines)推荐算法原理
对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...
随机推荐
- 还在用canvas画格子吗?文字烟花效果更不错噢
大家好,我是小丞同学,一名前端爱好者 欢迎访问博主的个人网站:一口奶盖 "在人间贩卖声音 等凑够满天星辰 放烟花给你看" 上次的烟花有些许平淡,这次来放大招了,让你的名字在天空绽放 ...
- 反转单词顺序列 牛客网 剑指Offer
反转单词顺序列 牛客网 剑指Offer 题目描述 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但 ...
- PHP笔记2__变量/字符串/类型转换/常量/,,
<?php //可变变量 $a = "ok"; $$a = "fine"; $$$a = "er"; echo $ok; echo & ...
- 七. Go并发编程--sync.Once
一.序 单从库名大概就能猜出其作用.sync.Once使用起来很简单, 下面是一个简单的使用案例 package main import ( "fmt" "sync&qu ...
- yum Multilib version problems
这两天在更新CentOS7系统时,出现了Multilib version problems错误,执行命令: # yum update 出现了的错误信息: .... ---> Package li ...
- LOTO实践【干货】电压比较器的快速应用
LOTO实践[干货]电压比较器的快速应用 话不多说先上图: 最近出差去客户那边做设备调试,现场如上图,其中我负责的技术部分包含了一个掉落物监测的功能.硬件上的原理比较简单,发射板上的红外发射头阵列,以 ...
- Redis安装、配置和卸载
1.安装 mkdir /usr/local/redis 添加目录 wget [http://download.redis.io/releases/redis-4.0.1](http://downloa ...
- vue-router 4 你真的熟练吗?
虽然 vue-router 4 大多数 API 保持不变,但是在 vue3 中以插件形式存在,所以在使用时有一定的变化.接下来就学习学习它是如何使用的. 一.安装并创建实例 安装最新版本的 vue-r ...
- F5 BIG-IP 远程代码执行RCE(CVE-2020-5902)复现
漏洞简介 F5 BIG-IP 是美国``F5公司一款集成流量管理.DNS.出入站规则.web应用防火墙.web网关.负载均衡等功能的应用交付平台. 在F5 BIG-IP产品的流量管理用户页面 (TMU ...
- c++学习笔记(十一)
函数重载(overloading) 概念 重载函数是函数的一种特殊情况,为方便使用,C++允许在同一范围中声明几个功能类似的同名函数,但是这些同名函数的形式参数(指参数的个数.类型或者顺序)必须不同, ...