Factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x^2 – 4. Matrices possess many kinds of matrix factorizations.

Although integer factorization is a sort of inverse to multiplication, it is much more difficult algorithmically, a fact which is exploited in the RSA cryptosystem to implement public-key cryptography. Pierre de Fermat was unable to discover that the 6th Fermat number 1 + 2^32 is not a prime number.

log(2)=0.3, 20位二进制约6位六进制,32位10位,64位19位, 128位38位。两个8位二进制数相乘,可写成(a*16+b)*(c*16+b)=ac*256+bc*16*ab+bb. *256放在另一个寄存器里,*16分成两截,ab和bb各最多8位。

Manipulating expressions is the basis of algebra. Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E*F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler, and may thus offer some insight on the problem. But factorization is not always possible, and when it is possible, the factors are not always simpler. For example, x^10 - 1 = (x-1)*(x^9 + x^8 + ... + x + 1).

The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems: When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minutes of computer time indicates how successfully this problem has been attacked during the past fifteen years. (Erich Kaltofen, 1982) Nowadays, modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. 1000位十进制数有3322个二进制位。量子计算是质变,8个4096位寄存器,baremetal能且仅能分解整数是小量变。我是外行,我不知道4096根线现实不。

Yun, David Y.Y. (1976). On square-free decomposition algorithms SYMSAC '76 Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26–35.

Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.

没有一目了然的。search(github emcd123 PolynomialFactorization) 有用SageMath写的。到 cocalc 试了下:

结果不对。

SageMath is a free open-source mathematics software system. It builds on top of many existing packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers. SageMath-9.3-Installer-v0.6.3.exe 820.72 MB

SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It uses mpmath, which is a free Python library for real and complex floating-point arithmetic with arbitrary precision.

Combinatorics is the branch of mathematics studying the enumeration, combination, and permutation of sets of elements and the mathematical relations that characterize their properties. Mathematicians sometimes use the term "combinatorics" to refer to a larger subset of discrete mathematics that includes graph theory. search(Combinatorics fourier)

六级/考研单词: mathematics, invert, exploit, implement, prime, log, manipulate, algebra, equate, seldom, thereby, insight, compute, finite, moderate, nowadays, digit, tertiary, symposium, hardware, parcel, intelligible, arithmetic, arbitrary, graph

stackoverflow上有人说:把f(x)分解成因式就是找出f(x)=0的所有根。也许有些程序找到的不是1而是0.999999999。可x^4+1=0没有实数根啊。

Factorization的更多相关文章

  1. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  2. Factorization Machine因子分解机

    隐因子分解机Factorization Machine[http://www. w2bc. com/article/113916] https://my.oschina.net/keyven/blog ...

  3. 关于NMF(Non-negative Matrix Factorization )

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  4. Factorization Machine

    Factorization Machine Model 如果仅考虑两个样本间的交互, 则factorization machine的公式为: $\hat{y}(\mathbf{x}):=w_0 + \ ...

  5. 1103. Integer Factorization (30)

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  6. Factorization Machines 学习笔记(三)回归和分类

      近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...

  7. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

  8. Factorization Machines 学习笔记(四)学习算法

      近期学习了一种叫做 Factorization Machines(简称 FM)的算法.它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...

  9. Factorization Machines 学习笔记(二)模型方程

      近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文 ...

  10. 分解机(Factorization Machines)推荐算法原理

    对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...

随机推荐

  1. Android编译执行envsetup.sh,产生工具命令m、mm、mmm、mmma、tapas 、croot、cgrep、jgrep、 resgrep、godir

    一般来说编译一个sdk或者一个比较大的工程项目,第一步都是执行 envsetup.sh这个脚本,比如编译android,qt源码以及其他一些嵌入式的sdk. 而且执行的时候需要特别注意使用 sourc ...

  2. 数据代理Object.defineProperty()

    数据代理: 通过一个对象代理对另一个对象中属性的操作(读/写) 数据代理 Object.defineProperty() Object.defineProperty() 方法会直接在一个对象上定义一个 ...

  3. Java——去掉小数点后面多余的0

    当小数点后位数过多,多余的0没有实际意义,根据业务需求需要去掉多余的0.后端存储浮点型数据一般会用到Bigdecimal 类型,可以调用相关方法去掉小数后多余0,然后转为string. public ...

  4. 在随着layui官网下架后 layui镜像站起来了

    layui:https://gitee.com/lh_yun/layui 介绍 layui镜像站 「本站仅为 layui 文档保留的镜像站点,与官方无关」 源码地址 在线 pdf 1.主页 https ...

  5. 通过大量实战案例分解Netty中是如何解决拆包黏包问题的?

    TCP传输协议是基于数据流传输的,而基于流化的数据是没有界限的,当客户端向服务端发送数据时,可能会把一个完整的数据报文拆分成多个小报文进行发送,也可能将多个报文合并成一个大报文进行发送. 在这样的情况 ...

  6. Chapter 1:Create You First 3D Scene With Three.js

    1,各浏览器对WebGL的支持 手机浏览器对WebGL的支持: 书的源码:https://github.com/josdirksen/learning-threejs 第一次用浏览器打开代码可能无法正 ...

  7. selenium的 元素定位、元素信息、交互

    selenium的元素定位? 元素定位:自动化要做的就是模拟鼠标和键盘来操作来操作这些元素,点击.输入等等.操作这些元素前首先 要找到它们,WebDriver提供很多定位元素的方法 方法: 1.fin ...

  8. 【从头到脚品读 Linux 0.11 源码】第一回 最开始的两行代码

    从这一篇开始,您就将跟着我一起进入这操作系统的梦幻之旅! 别担心,每一章的内容会非常的少,而且你也不要抱着很大的负担去学习,只需要像读小说一样,跟着我一章一章读下去就好. 话不多说,直奔主题.当你按下 ...

  9. [luogu4331]数字序列

    令$a'_{i}=a_{i}+n-i$.$b'_{i}=b_{i}+n-i$,代价仍然是$\sum_{i=1}^{n}|a'_{i}-b'_{i}|$,但条件变为了$b'_{i}\le b'_{i+1 ...

  10. ant命令

    ant -help 帮助(ant -h) ant -projecthelp 列举xml中重要的部分 (ant -p) ant -version 查看版本 ant -diagnostics 打印所有环境 ...