正题

题目链接:https://www.luogu.com.cn/problem/P2012


题目大意

\(12\)种东西排列成长度为\(n\)的序列,要求前四种出现奇数次,后四种出现偶数次,求方案。\(T\)组数据,对\(10^9\)取模。

\(1\leq n< 2^{63},1\leq T\leq 2\times 10^5\)


解题思路

显然是\(EGF\),没有限制的话就是\(e^x\),奇数就是\(\frac{e^x-e^{-x}}{2}\),偶数就是\(\frac{e^{x}+e^{-x}}{2}\),这些都是老生常谈了。

然后答案就是

\[n!\times (\frac{e^x-e^{-x}}{2})^4(\frac{e^x+e^{-x}}{2})^4(e^{x})^4
\]

然后解出来就是

\[F(x)=n!\times \frac{1}{256}\times(e^{12x}-4e^{8x}+6e^{4x}-4+e^{-4x})
\]
\[\Rightarrow F(x)[n]=\frac{1}{256}\times(12^n-4\times 8^n+6\times 4^{n}-4+(-4)^n)
\]

然后发现\(256\)没有逆元,但是因为这些底数都含有\(256\)的因数\(2\)所以

\[=81\times 12^{n-4}-8^{n-2}+6\times 4^{n}-4+(-4)^{n-4}
\]

小的直接处理就好了

然后发现这样还是过不了,那就用扩展欧拉定理模上一个\(\varphi(10^9)=4\times 10^8\)然后根号分治预处理一下光速幂就可以过了。

时间复杂度\(O(20000+T)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define ll long long
using namespace std;
const ll b[5]={0,0,0,0,24},T=20000,N=T+10,P=1e9,Phi=4e8;
ll n,pw2[N],pw3[N],Pw2[N],Pw3[N];
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-f;c=getchar();}
while(isdigit(c))x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
void print(ll x)
{if(x>9)print(x/10);putchar(x%10+48);return;}
ll G4(ll n)
{n%=Phi;return Pw2[n/T]*Pw2[n/T]%P*pw2[n%T]%P*pw2[n%T]%P;}
ll G8(ll n)
{n%=Phi;return Pw2[n/T]*pw2[n%T]%P*G4(n)%P;}
ll G12(ll n)
{n%=Phi;return Pw3[n/T]*pw3[n%T]%P*G4(n)%P;}
signed main()
{
pw2[0]=pw3[0]=Pw2[0]=Pw3[0]=1;
for(ll i=1;i<=T;i++)
pw2[i]=pw2[i-1]*2ll%P,pw3[i]=pw3[i-1]*3ll%P;
for(ll i=1;i<T;i++)
Pw2[i]=Pw2[i-1]*pw2[T]%P,Pw3[i]=Pw3[i-1]*pw3[T]%P;
while(1){
n=read();
if(!n)break;
if(n<=4){print(b[n]),putchar('\n');continue;}
ll ans=81ll*G12(n-4);
ans=ans-G8(n-2);
ans=ans+6ll*G4(n-4);
ans=ans+((n&1)?-1:1)*G4(n-4);
print((ans%P+P)%P);
putchar('\n');
}
return 0;
}

P2012-拯救世界2【EGF】的更多相关文章

  1. 洛谷P2000 拯救世界(生成函数)

    题面 题目链接 Sol 生成函数入门题 至多为\(k\)就是\(\frac{1-x^{k+1}}{1-x}\) \(k\)的倍数就是\(\frac{1}{1-x^k}\) 化简完了就只剩下一个\(\f ...

  2. luogu P2000 拯救世界

    嘟嘟嘟 题目有点坑,要你求的多少大阵指的是召唤kkk的大阵数 * lzn的大阵数,不是相加. 看到这个限制条件,显然要用生成函数推一推. 比如第一个条件"金神石的块数必须是6的倍数" ...

  3. 【洛谷】P2000 拯救世界

    题解 小迪的blog : https://www.cnblogs.com/RabbitHu/p/9178645.html 请大家点推荐并在sigongzi的评论下面点支持谢谢! 掌握了小迪生成函数的有 ...

  4. Luogu 2000 拯救世界

    从胡小兔的博客那里过来的,简单记一下生成函数. 生成函数 数列$\{1, 1, 1, 1, \cdots\}$的生成函数是$f(x) = 1 + x + x^2 + x^3 + \cdots$,根据等 ...

  5. 清北学堂模拟赛d7t6 拯救世界

    分析:如果题目中没有环的话就是一道裸的最长路的题目,一旦有环每个城市就会被救多次火了.把有向有环图变成有向无环图只需要tarjan一边就可以了. #include <bits/stdc++.h& ...

  6. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  7. [LGP2000] 拯救世界

    6的倍数 1/(1-x^6) 最多9块 (1-x^10)/(1-x) 最多5块 (1-x^6)/(1-x) 4的倍数 1/(1-x^4) 最多7块 (1-x^8)/(1-x) 2的倍数 1/(1-x^ ...

  8. Luogu2000 拯救世界

    题目链接:戳我 生成函数的入门题吧. 我们可以把条件限制转化为生成函数,然后用第i项的系数来表示一共使用n块石头的方案个数. (你问我为什么?你可以自己演算一下,或者去看大佬的博客-->这里面讲 ...

  9. [题解] Luogu P2000 拯救世界

    生成函数板子题...... 要写高精,还要NTT优化......异常dl 这个并不难想啊...... 一次召唤会涉及到\(10\)个因素,全部写出来,然后乘起来就得到了答案的生成函数,输出\(n\)次 ...

  10. [洛谷P2000 拯救世界]

    生成函数版题. 考虑对于这些条件写出\(OGF\) \(1 + x^6 + x^{12} + x^{18}..... = \frac{1}{1 - x^6}\) \(1 + x + x ^ 2 + x ...

随机推荐

  1. Socket编程 Tcp和粘包

    大多数程序员都要接触网络编程,Web开发天天和http打交道.稍微底层一点的程序员,就是TCP/UDP . 对程序员来说,Tcp/udp的核心是Socket编程. 我的浅薄的观点---------理解 ...

  2. C# WCF的POST请求包含Stream及多个参数

    当使用WCF的API的POST请求时,如果参数列表里,除了Stream类型形参,还具有多个形参, 在寄宿过程中会报错: 约定"IService1"中的操作"DoWork& ...

  3. mzy git学习,git推送到远程库(八)

    git在同步到远程库 关于git中多个用户切换的事情: 完全使用账户密码策略连接远程库: 之前一直尝试在本地切换多个用户,发现一直不行,很奇怪?后面发现必须要去win10的凭据管理器删除当前git的凭 ...

  4. JAVA垃圾回收分代处理思想

    原文链接:http://www.cnblogs.com/laoyangHJ/archive/2011/08/17/JVM.html JVM分代垃圾回收策略的基础概念 JVM分代垃圾回收策略的基础概念 ...

  5. Python也可以拥有延迟函数

    延迟函数defer 我们知道在Golang中有一个关键字defer,用它来声明在函数调用前,会让函数*延迟**到外部函数退出时再执行,注意,这里的退出含义:函数return返回或者函数panic退出 ...

  6. git所遇到的问题

    出现这种情况,或 ERROR: Repository not found. fatal: 无法读取远程仓库. 解决办法如下: 1.先输入$ git remote rm origin(删除关联的orig ...

  7. Notepad++插件推荐和下载

    Notepad++因为其强劲的插件支持,越来越受到编程爱好者的喜欢.很多优秀的插件现在已经默认安装了,下面是100多款受欢迎的Notepad++插件的介绍和下载地址. XML Tools 这个插件是包 ...

  8. 手机端rem简单配置相关

    手机端rem简单配置相关 1 <!DOCTYPE html> 2 <html xmlns="http://www.w3.org/1999/xhtml"> 3 ...

  9. Java反射的浅显理解

    一.回顾反射相关的知识 1.在xml文件中使用反射的好处: 1)代码更加灵活,后期维护只需要修改配置文件即可 · 初学者一般习惯于在代码本身上直接修改,后期也可以修改配置文件达到相同的目的 · 修改配 ...

  10. 20210716考试-NOIP19

    u,v,w. 这场考过. T1 u 差分裸题 #include<bits/stdc++.h> using namespace std; const int N=5000; int n,m; ...