Singh K., Ojha U. & Lee Y. FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery. CVPR, 2019.

利用GAN生成图片, 特别的是, 这是一种分层的生成方式: 背景 + 轮廓 + 色彩和纹理. 同时这个网络还可以用于无监督的分类.

主要内容

具体流程如下图所示:

  1. 背景code \(b\) + 隐变量\(z\) 生成背景 \(\mathcal{B}\);

  2. 轮廓code \(p\) + \(z\) 生成掩码\(\mathcal{P}_m\) 和轮廓\(\mathcal{P}_f\);

  3. 色彩和纹理code \(c\) 生成掩码\(\mathcal{C}_m\)和实例\(\mathcal{C}_f\).

  4. 最后的图片为

\[(1-\mathcal{C}_m) \odot[(1-\mathcal{P}_m) \odot \mathcal{\beta} + \mathcal{P}_m \odot \mathcal{P}_f] + \mathcal{C}_m \odot \mathcal{C}_f.
\]

隐变量

注意到, 整个网络用到了4个隐变量, 分别是\(b, p, c\) 和\(z\), 其中

\[z \sim \mathcal{N}(0, 1) \\
b \sim \mathrm{Cat}(K=N_b, p=1/N_b) \\
p \sim \mathrm{Cat}(K=N_p, p=1/N_p) \\
c \sim \mathrm{Cat}(K=N_c, p=1/N_c)
\]

其中\(N_b, N_p, N_c\)皆为超参数.

另外, 基于一个直接理解, 即轮廓是较为抽象的信息, 同一类的物体的轮廓往往是一致, 但是同一类的物体要进行细分依赖于\(c\)即色彩和纹理, 所以作者假设\(N_p < N_c\), 多个\(c\)会共享一个\(p\)(虽然我不知道怎么实现这个的). 另外, 由于背景往往和物体有很大的联系, 比如鸭子飞到树上是比较少见的事情, 所以在训练的时候, 作者会选择令\(b=c\), 相当于少采样了一次. 但是在测试的时候, 这个约束可以不关, 我们完全可以让鸭子飞到太空上.

背景

利用背景信息, 其实一个很直接很直接的问题是, 怎么得到背景信息呢? 这实际上是一个分割问题, 作者会利用检测器将图片中的背景信息提取出来, 所以上面的\(D_b, D_{bg\_aux}\) 都是基于patch而非整个图片工作的. 这样, 对于生成器\(G_b\)生成的图片, 我们同样可以进行相同的操作了.

\(D_b\)便是普通的用于判断图片真假的判别器, 后者\(D_{bg\_aux}\)似乎是用来判断这个patch是否是背景图片的, 这能够使得网络更好的生成背景图片.

轮廓

轮廓这部分生成器会生成掩码和实例, 并且之前的特征会继续传给下一个阶段使用.

要知道, 想要通过判别器\(D\)来训练生成器的一个很重要的条件是真实数据是存在的, 但是我们实际上并没有这部分数据(即轮廓), 所以作者采用了类似InfoGAN的info损失:

\[\mathcal{L}_{p\_info} = \max_{D_p, G_{p, f}, G_{p,m}} \mathbb{E}_{z, p} [\log D_p(p|\mathcal{P}_{f, m})],
\]

其中\(D_p\)是用来近似条件分布的.

色彩和纹理

这部分是类似上面的, 因为我们同样没有色彩和纹理的数据, 同样有一个\(\mathcal{L_{c\_info}}\)的损失, 以及最后, 三个部分结合起来是最后的图片, 这部分可以直接用普通的adversarial loss \(\mathcal{L}_{c\_adv}\).

用于无监督分类

这个倒是没什么特别的, 就是再训练\(\phi_p, \phi_c\), 将图片\(\mathcal{C}_j\) 映射到隐变量\(c, p\), 并根据这些特征利用K均值分类.

代码

原文代码

FineGAN的更多相关文章

  1. Fine-Grained(细粒度) Image – Papers, Codes and Datasets

    Table of contents Introduction Survey papers Benchmark datasets Fine-grained image recognition Fine- ...

随机推荐

  1. 学习java 7.3

    学习内容:定义类不需要加static 成员方法在多个对象时是可以共用的,而成员变量不可以共用,多个对象指向一个内存时,改变变量的值,对象所在的类中的变量都会改变 成员变量前加private,成员方法前 ...

  2. 微信小程序的wx.login用async和data解决code不一致的问题

    由于wx.login是异步函数,导致在我们获取微信小程序返回的code去请求我们的登录接口时code的值会异常.现在用promise封装一下,将他success的结果返回,在登陆函数中await就可以 ...

  3. C++字节对齐(对象大小)

    内部数据成员对齐参考这篇 https://www.cnblogs.com/area-h-p/p/10316128.html 这里只强调C++字节对齐特点 ①静态数据成员属于类域,在对象中不占大小 ②若 ...

  4. Shell学习(八)——dd命令

    一.dd命令的解释 dd:用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换. 注意:指定数字的地方若以下列字符结尾,则乘以相应的数字:b=512:c=1:k=1024:w=2 参数注释: 1. ...

  5. BigDecimal 计算注意事项

    BigDecimal 在进行除法运算(divide)时一定要注意:如果被除数为变量,一定要指定精度 和 舍入模式,否则会报:Non-terminating decimal expansion; no ...

  6. 【Python】【Module】random

    mport random print random.random() print random.randint(1,2) print random.randrange(1,10) 随机数 import ...

  7. 【Linux】【Shell】【Basic】字符串操作

    1. 字符串切片:             ${var:offset:number}                 取字符串的子串:                 取字符趾的最右侧的几个字符:${ ...

  8. Cnblog博客美化

    具体的使用教程文档在这里 BNDong/Cnblogs-Theme-SimpleMemory 简要的操作如下: 博客园 - 管理 - 设置 值得注意得是: 要想JS代码要申请才可以使用 博客侧边栏 可 ...

  9. springboot-devtools实现项目的自动重启

    热部署的引入依赖: <!-- 热部署 --> <dependency> <groupId>org.springframework.boot</groupId& ...

  10. 【C/C++】拔河比赛/分组/招商银行

    题目:小Z组织训练营同学进行一次拔河比赛,要从n(2≤n≤60,000)个同学中选出两组同学参加(两组人数可能不同).对每组同学而言,如果人数超过1人,那么要求该组内的任意两个同学的体重之差的绝对值不 ...