洛谷P1450.硬币购物
题目大意:4种面值c[i]的硬币,每种硬币持有d[i]个,问有多少种方法支付出正好N块钱。
可以先预处理出持有硬币无限的情况dp[n],即一个完全背包问题。
之后根据容斥原理,相当于求但是拥有限制
,可以参考有限制的不定方程非负整数解的容斥方法,我们设全集
为所有在无限情况下凑出S的方案数,属性为
,那么就可以对所有补集的并用容斥原理展开进行计算,对于每个
是由具有k个不同反向性质
组成的集合,对应在容斥式子中的答案就是在无限情况下凑出
的方案数即
。
最后用全集减去就可以了。
#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 100010;
const int mod = 1e9 + 7;
const double eps = 1e-8;
LL c[5], N;
LL d[5], S;
LL dp[maxn];
void solve()
{
memset(dp, 0, sizeof(dp));
dp[0] = 1;//价格为0时无限硬币组成之方法数
for (LL i = 1; i <= 4; i++)
{
for (LL j = 0; j <= S; j++)
{
if (j - c[i] >= 0)
dp[j] += dp[j - c[i]];
}
}
LL ans = 0;
for (LL i = 1; i < 16; i++)//枚举集合数1的个数
{
LL tmp = S, bit = 0;//1的个数
for (LL j = 1; j <= 4; j++)
{
if ((i >> (j - 1)) & 1)//这一位1
{
tmp -= c[j] * (d[j] + 1);
bit++;
}
}
if (tmp >= 0)
ans += (bit % 2 ? 1 : -1) * dp[tmp];//用容斥转化为无限制的完全背包情形
}
cout << dp[S] - ans << endl;
}
int main()
{
IOS;
for (int i = 1; i <= 4; i++)
cin >> c[i];
cin >> N;
for (int i = 0; i < N; i++)
{
for (int j = 1; j <= 4; j++)
cin >> d[j];
cin >> S;
solve();
}
return 0;
}
洛谷P1450.硬币购物的更多相关文章
- 洛谷 P1450.硬币购物 解题报告
P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...
- 洛谷 P1450 解题报告
P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...
- 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...
- 洛谷—— P1450 [HAOI2008]硬币购物
P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...
- 洛谷P1450 [HAOI2008]硬币购物
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...
- 【洛谷P1450】硬币购物
题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- 洛谷P2732 商店购物 Shopping Offers
P2732 商店购物 Shopping Offers 23通过 41提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交 讨论 题解 最新讨论 暂时没有讨论 题目背景 在商店中, ...
- 洛谷——P2708 硬币翻转
P2708 硬币翻转 题目背景 难度系数:☆☆☆☆☆(如果你看懂了) 题目描述 从前有很多个硬币摆在一行,有正面朝上的,也有背面朝上的.正面朝上的用1表示,背面朝上的用0表示.现在要求从这行的第一个硬 ...
随机推荐
- gin中XML/JSON/YAML/ProtoBuf 渲染
package main import ( "github.com/gin-gonic/gin" "github.com/gin-gonic/gin/testdata/p ...
- Mac系统U盘制作教程
您可以将外置驱动器或备用宗卷用作安装 Mac 操作系统的启动磁盘. 以下高级步骤主要适用于系统管理员以及熟悉命令行的其他人员.升级 macOS 或重新安装 macOS 不需要可引导安装器,但如果您要在 ...
- Linux身份鉴别机制原理
传统的UNIX身份鉴别机制原理 传统的UNIX身份鉴别即口令认证方式,它主要通过识别用户的用户名或者UID号获取在/etc/shadow中存放的对应用户密码密文等信息,然后获取用户输入密码并采用cry ...
- 配置kubectl连接多个kubernetes集群
背景:我们通过会有多个k8s集群,例如集群(cn-k8s)和集群(jp-k8s),那个就需要有一台服务器可以同时访问两个集群,方式:将2个集群的config信息存放到一个文件中,通过使用 kubect ...
- Linux 总结
查看端口 lsof -i:8000 查看进程 ps -ef | grep python netstat -tunlp |grep 端口号 拷贝 cp 文件 生成文件名 做软连接找到目标文件目录 ...
- django之集成第三方支付平台PaysAPI与百度云视频点播服务接入
PaysAPI直接查看接口文档:https://www.paysapi.com/docindex,比较简单 百度云视频点播服务接入: 1. 准备工作:百度云的示例:http://cyberplayer ...
- 布客·ApacheCN 翻译校对活动进度公告 2020.5
注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(52981514 ...
- hihoCoder挑战赛1 毁灭者问题
题目链接:http://hihocoder.com/problemset/problem/1034 数据结构题,由于每个魔法单位有着不同的回复速度和上限,所以不能根据吸收时间点进行查询和更新.但是如果 ...
- javac、java、javap 的使用详解
简介 JDK中常用命令 切换目录 切换目录 进入D:\zs 第一种 第二种 其他常用命令 cls: 实现清屏 cd..: 切换到上一级目录 javac 简介 来编译.java文件的.命令行下直接输入j ...
- wget: unable to resolve host address ‘dl.grafana.com’的解决方法
[root@Server-qnrsyp system]# wget --no-check-certificate https://dl.grafana.com/oss/release/grafana_ ...