传送门

题目大意:4种面值c[i]的硬币,每种硬币持有d[i]个,问有多少种方法支付出正好N块钱。

可以先预处理出持有硬币无限的情况dp[n],即一个完全背包问题。

之后根据容斥原理,相当于求但是拥有限制,可以参考有限制的不定方程非负整数解的容斥方法,我们设全集为所有在无限情况下凑出S的方案数,属性为,那么就可以对所有补集的并用容斥原理展开进行计算,对于每个是由具有k个不同反向性质组成的集合,对应在容斥式子中的答案就是在无限情况下凑出 的方案数即

最后用全集减去就可以了。

#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 100010;
const int mod = 1e9 + 7;
const double eps = 1e-8; LL c[5], N;
LL d[5], S;
LL dp[maxn]; void solve()
{
memset(dp, 0, sizeof(dp));
dp[0] = 1;//价格为0时无限硬币组成之方法数
for (LL i = 1; i <= 4; i++)
{
for (LL j = 0; j <= S; j++)
{
if (j - c[i] >= 0)
dp[j] += dp[j - c[i]];
}
}
LL ans = 0;
for (LL i = 1; i < 16; i++)//枚举集合数1的个数
{
LL tmp = S, bit = 0;//1的个数
for (LL j = 1; j <= 4; j++)
{
if ((i >> (j - 1)) & 1)//这一位1
{
tmp -= c[j] * (d[j] + 1);
bit++;
}
}
if (tmp >= 0)
ans += (bit % 2 ? 1 : -1) * dp[tmp];//用容斥转化为无限制的完全背包情形
}
cout << dp[S] - ans << endl;
} int main()
{
IOS;
for (int i = 1; i <= 4; i++)
cin >> c[i];
cin >> N;
for (int i = 0; i < N; i++)
{
for (int j = 1; j <= 4; j++)
cin >> d[j];
cin >> S;
solve();
} return 0;
}

洛谷P1450.硬币购物的更多相关文章

  1. 洛谷 P1450.硬币购物 解题报告

    P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...

  2. 洛谷 P1450 解题报告

    P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...

  3. 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)

    洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...

  4. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  5. 洛谷P1450 [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...

  6. 【洛谷P1450】硬币购物

    题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...

  7. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

  8. 洛谷P2732 商店购物 Shopping Offers

    P2732 商店购物 Shopping Offers 23通过 41提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目背景 在商店中, ...

  9. 洛谷——P2708 硬币翻转

    P2708 硬币翻转 题目背景 难度系数:☆☆☆☆☆(如果你看懂了) 题目描述 从前有很多个硬币摆在一行,有正面朝上的,也有背面朝上的.正面朝上的用1表示,背面朝上的用0表示.现在要求从这行的第一个硬 ...

随机推荐

  1. 微服务探索之路03篇-docker私有仓库Harbor搭建+Kubernetes(k8s)部署私有仓库的镜像

    ❝ 目录: 微服务探索之路01篇.net6.0项目本地win10系统docker到服务器liunx系统docker的贯通 微服务探索之路02篇liunx ubuntu服务器部署k8s(kubernet ...

  2. jenkins自动化pipline的ci/cd流水线

    pipeline { agent any tools { //工具必须预先在jenkins中预配置 maven 'mvn' jdk 'jdk' } stages { stage('Env') { st ...

  3. 被mybatis一级缓存坑了

    目录 背景 场景 原因 解法 参考 背景 项目中出现了这样一个问题,就是select出来的数据和数据库里的数据不一样,就非常的奇怪,发现原来是mybatis的缓存导致的,经过查询资料发现这是mybat ...

  4. X-former:不止一面,你想要的Transformer这里都有

    原创作者 | FLPPED 参考论文: A Survey of Transformers 论文地址: https://arxiv.org/abs/2106.04554 研究背景: Transforme ...

  5. 关于mysql,需要掌握的基础(一):CRUD、存储引擎、单表查询相关、多表查询join、事务并发、权限管理等等

    目录 关于mysql,需要掌握的基础(一): 1.了解数据库sql.数据库系统.数据库管理系统的概念. 2.了解DDL.DML.DQL语句是什么? 3.了解存储引擎.存储引擎[InnoDB 和 MyI ...

  6. Hive安装教程

    Hive的安装和使用 我的版本: JAVA_HOME=/usr/local/soft/jdk1.8.0_171 HADOOP_HOME=/usr/local/soft/hadoop-2.7.6 HIV ...

  7. 将string字符串中的换行符进行替换

    /** * 方法名称:replaceBlank * 方法描述: 将string字符串中的换行符进行替换为"" * */ public static String replaceBl ...

  8. Java线程池实现原理及其在美团业务中的实践(转)

    转自美团技术团队:https://tech.meituan.com/2020/04/02/java-pooling-pratice-in-meituan.html 随着计算机行业的飞速发展,摩尔定律逐 ...

  9. Redis-46面试题

    1.什么是 Redis?简述它的优缺点? Redis 的全称是:Remote Dictionary.Server,本质上是一个 Key-Value 类型的内存数据库,很像 memcached,整个数据 ...

  10. iptables防火墙 (纸是包不住火的,得用水泥)

    iptables防火墙 1.Linux防火墙基础 2.编写防火墙规则 1.Linux防火墙基础 iptables概述: Linux 系统的防火墙: IP信息包过滤系统,它实际上由两个组件netfilt ...