Easy version:Codeforces 题面传送门 & 洛谷题面传送门

Hard version:Codeforces 题面传送门 & 洛谷题面传送门

发现自己交互题烂得跟 sh*t 一样……于是不管三七二十一先来两道再说(

首先考虑最 trivial 的情况,也就是 \(k=1\) 和 \(k=n\) 两种情况,对于 \(k=1\) 你就 \(\mathcal O(n^2)\) 地检查一遍所有的 pair,具体来说我们枚举所有 \(i,j(i<j)\),然后依次询问 \(i,j\),如果询问到 \(j\) 时发现队列中存在 \(i\),就说明在 \(j\) 前面有存在与 \(a_j\) 相同的值,此时 \(j\) 不会对答案产生贡献,因此我们考虑开一个数组 \(is_i\) 表示 \(i\) 是否对答案产生贡献,每访问到这样的 \(j\) 就将 \(is_j\) 设为 \(0\) 即可。最后统计 \(\sum\limits_{i=1}^nis_i\) 即可,总询问次数 \(\dbinom{n}{2}·2=n(n-1)\)

\(k=n\) 的情况更容易,直接扫一遍,如果插入一个 \(i\) 时发现 \(i\) 已经存在,就将 \(is_i\) 设为 \(0\) 即可,总查询次数 \(n\)。

现在继续思考更一般的情形,也就是 \(k\ne 1\) 且 \(k\ne n\) 的情形,我们考虑将两个暴力结合一下,也就是人们常说的分块暴力,我们考虑将每 \(\dfrac{k}{2}\) 个元素形成一块,询问时对每两个块 \(i,j(i<j)\) 跑一遍上面 \(k=n\) 的暴力然后清空队列,这样对于每一对满足 \(x<y\) 且 \(a_x=a_y\) 的 \((x,y)\),如果 \(x,y\) 在同一块中那只要扫到 \(x\) 所在的块就会统计到这个二元组,否则在遍历 \(x\) 所在的块与 \(y\) 所在的块时会遍历到该二元组,这也就证明了上述算法的正确性。

算下询问次数,总共 \(\dfrac{2n}{k}\) 个块,遍历次数 \(\dbinom{2n/k}{2}=\mathcal O(\dfrac{2n^2}{k^2})\),而每次遍历要检验 \(k\) 个元素,因此总操作次数 \(\dfrac{2n^2}{k}\),可以通过 easy version。

const int MAXN=1<<10;
int n,k,is[MAXN+5];
bool query(int x){
printf("? %d\n",x);fflush(stdout);
char c;cin>>c;return (c=='Y');
}
int main(){
scanf("%d%d",&n,&k);int siz=max(k>>1,1);
for(int i=1;i<=n;i++) is[i]=1;int cnt=n/siz;
for(int i=1;i<=cnt;i++) for(int j=i+1;j<=cnt;j++){
for(int l=(i-1)*siz+1;l<=i*siz;l++) is[l]&=!query(l);
for(int l=(j-1)*siz+1;l<=j*siz;l++) is[l]&=!query(l);
printf("R\n");fflush(stdout);
} int sum=0;for(int i=1;i<=n;i++) sum+=is[i];
printf("! %d\n",sum);fflush(stdout);
return 0;
}

接下来考虑 hard version,不难发现上述算法的瓶颈在于,每次遍历两块时都要重新清空队列,效率太低。考虑优化。我们考虑将所有待检验的二元组 \((i,j)\) 看作一个边,那么显然会连成一个 \(\dfrac{2n}{k}\) 个点的完全图(注:这里可能有人会有疑问,在之前的算法中我们不是强制钦定 \(i\) 必须小于 \(j\) 吗?那这里不应该也有 \(i<j\) 吗?为什么会得到一张完全图呢?事实上我们并不一定非得要 \(i<j\),如果我们采取这样一个思想:维护一个集合表示目前没有值与其重复的元素,对于某个 \(a_i\),如果我们发现在该集合中存在某个元素,满足值与其相同,就将 \(a_i\) 从集合中删除,如此进行下去直到集合中无法再删除元素。此时 \(is_i\) 的定义要变为 \(a_i\) 是否还在集合中。不难发现这两个思路是等价的,而后者并不需要用到 \(i<j\) 这个性质),我们的目标即是覆盖这些边。不难发现对于完全图中的一条长度为 \(l\) 的链 \(a_1\to a_2\to a_3\to\cdots\to a_l\),覆盖它们所需的最小代价为 \(l·\dfrac{k}{2}\),具体步骤就是对于这条链上所有点一一询问即可。而显然我们不会重复覆盖相同的边,因此对于某个链覆盖的方案,覆盖整张图所需的最少代价就是 \(\dfrac{k}{2}·(\dbinom{2n/k}{2}+\text{使用链的个数})\)。而对于一个 \(n\) 个点(\(n\) 是偶数)的完全图而言有一个性质,就是覆盖它的边集所用的最少的链的个数是 \(\dfrac{n}{2}\),具体构造是我们枚举所有 \(s\in[1,\dfrac{n}{2}]\),然后 \(s\to s+1\to s-1\to s+2\to s-2\) 这样之字形反复横跳,如果超过 \(n\) 就回到 \(1\),如果小于 \(1\) 就回到 \(n\)。可以证明这样操作之后必然可以覆盖所有边,大概证明方式就是,对于每一条边 \((i,j)\),显然恰好存在两个点 \(s\) 满足从 \(s\) 开始能够遍历到这个边,而这两个 \(s\) 刚好差 \(\dfrac{n}{2}\),因此必定恰好有一个 \(s\) 在 \([1,\dfrac{n}{2}]\) 中。具体细节留给读者自己思考。操作次数 \(\dfrac{k}{2}·(\dbinom{2n/k}{2}+\dfrac{2n}{2k})=\dfrac{k}{2}·(\dfrac{n}{k}·(\dfrac{2n}{k}-1)+\dfrac{n}{k})=\dfrac{n^2}{k}\),可以通过 hard version。

const int MAXN=1<<10;
int n,k,siz,cnt,is[MAXN+5];
bool query(int x){
printf("? %d\n",x);fflush(stdout);
char c;cin>>c;return (c=='Y');
}
void deal(int x){
for(int i=(x-1)*siz+1;i<=x*siz;i++) if(is[i]&&query(i)) is[i]=0;
}
int main(){
scanf("%d%d",&n,&k);siz=max(k>>1,1);cnt=n/siz;
for(int i=1;i<=n;i++) is[i]=1;
for(int i=1;i<=n/k;i++){
int cur=0;
for(int j=1;j<=cnt;j++) deal((i+cur+cnt)%cnt+1),cur=(cur<=0)-cur;
printf("R\n");fflush(stdout);
} int sum=0;for(int i=1;i<=n;i++) sum+=is[i];
printf("! %d\n",sum);fflush(stdout);
return 0;
}

Codeforces 1290D - Coffee Varieties(分块暴力+完全图的链覆盖)的更多相关文章

  1. Codeforces Beta Round #13 E. Holes 分块暴力

    E. Holes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/13/problem/E Des ...

  2. Codeforces#86D Powerful array(分块暴力)

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

  3. Codeforces Round #616 Coffee Varieties

    题意 不太容易讲清,看英文吧 codeforces 做法 先从简单的看起 将块以\(\frac{k}{2}\)个元素为界,然后类似线段树一样递归下去,每次一层的左子树跟右子树的块相互暴力比较 \[\b ...

  4. (分块暴力)Time to Raid Cowavans CodeForces - 103D

    题意 给你一段长度为n(1 ≤ n ≤ 3·1e5)的序列,m (1 ≤ p ≤ 3·1e5)个询问,每次询问a,a+b,a+2b+...<=n的和 思路 一开始一直想也想不到怎么分,去维护哪些 ...

  5. D. Alyona and a tree 公式转换 + 分块暴力

    http://codeforces.com/problemset/problem/740/D 对于每一对<u, v>.设dis[u]表示root到点u的距离,那么dis<u去v> ...

  6. Codeforces 1129D - Isolation(分块优化 dp)

    Codeforces 题目传送门 & 洛谷题目传送门 又独立切了道 *2900( 首先考虑 \(dp\),\(dp_i\) 表示以 \(i\) 为结尾的划分的方式,那么显然有转移 \(dp_i ...

  7. Codeforces Gym 100015H Hidden Code 暴力

    Hidden Code 题目连接: http://codeforces.com/gym/100015/attachments Description It's time to put your hac ...

  8. Codeforces gym 100685 A. Ariel 暴力

    A. ArielTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/A Desc ...

  9. Codeforces Gym 100637G G. #TheDress 暴力

    G. #TheDress Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/G ...

随机推荐

  1. Convolutional Neural Network-week2编程题1(Keras tutorial - 笑脸识别)

    本次我们将: 学习到一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的几个较低级别的框架之上的框架. 看看如何在几个小时内建立一个深入的学习算法. 为什么我们要使用Keras框架 ...

  2. JVM:类加载与字节码技术-1

    JVM:类加载与字节码技术-1 说明:这是看了 bilibili 上 黑马程序员 的课程 JVM完整教程 后做的笔记 内容 类文件结构 字节码指令 下面的内容在后续笔记中: 编译期处理 类加载阶段 类 ...

  3. STM32的串口通信

    本篇文章主要讲解一个在开发过程中经常使用到的一个外设---串口. 串口是绝大多数 MCU 中不可或缺的一个外设,同时也是我们开发中经常使用的一种调试手段,所以在STM32的学习中,串口的配置使用也是必 ...

  4. linux上docker形式部署GB28181服务wvp,zlmedia

    目录 1.bash方式从镜像创建docker 2.下载vim 3.修改run.sh bug如下 4.修改application.xml 5.运行一下sh run.sh 6.Vim config.ini ...

  5. Allure快速入门

    1.关于Allure     Allure框架是一个灵活轻量级多语言测试报告工具,它不仅可以以WEB的方式展示简介的测试结果,而且允许参与开发过程的每个人从日常执行的测试中最大限度的提取有用信息.   ...

  6. 整数转化 牛客网 程序员面试金典 C++ Python

    整数转化 牛客网 程序员面试金典 C++ Python 题目描述 编写一个函数,确定需要改变几个位,才能将整数A转变成整数B. 给定两个整数int A,int B.请返回需要改变的数位个数. 测试样例 ...

  7. 求树的直径【两遍BFS】

    两遍BFS.从任意一个点出发,第一遍可以找到直径的一端,从这端出发即可找到另外一端. 证明:从U点出发,到达V[画个图便清晰了] 1.如果U在直径上,则V一定是直径的一个端点. 2.如果U不在直径上. ...

  8. PHP笔记3__简易计算器

    <?php header("Content-type: text/html; charset=utf-8"); error_reporting(E_ALL & ~E_ ...

  9. java实现rsa加密算法【5min快速应用教程】

    该篇文章的主要目的是让读者能够迅速应用到项目中,想要了解详细的rsa加密算法的,可以百度找到更多原理.深度分析的文章. RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一 ...

  10. etcd原理详解代码剖析

    1 架构 从etcd的架构图中我们可以看到,etcd主要分为四个部分. HTTP Server: 用于处理用户发送的API请求以及其它etcd节点的同步与心跳信息请求. Store:用于处理etcd支 ...