Atcoder 题面传送门 & 洛谷题面传送门

我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限(

首先按照套路 Min-Max 容斥,\(ans=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times E(\min(T))\),考虑怎样求这个式子的值。首先我们需要搞清楚 \(E(\min(T))\),假设 \(T\) 中包含下标为 \(x_1,x_2,\cdots,x_m\) 这 \(m\) 个元素,那么 \(E(\min(T))\) 的实际意义就是期望最少选多少个数就能找到一个 \(x_i\) 的出现次数达到了其上界 \(b_{x_i}\),首先有可能我们抽到的数不在 \(T\) 当中,这里有一个小套路,我们记 \(e\) 为期望多少次才能抽到一个 \(T\) 中的数,那么显然 \(e=\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\),这样相当于我们将原来每一步的贡献 \(1\) 变成了 \(e\),因此我们只需将答案乘个 \(e\) 就可以得到最终的 \(E(\min(T))\)。这样一来我们就不用考虑不在 \(T\) 中的数的影响了,不过我们发现这东西是不太好直接求的,故我们不妨换个角度,我们假设到达最终状态时元素 \(x_i\) 被选择的 \(c_i\) 次,那么不难发现对于任意一个由初始状态 \(0,0,\cdots,0\) 到达最终状态的取数方式,它中间总要经过 \(\sum c_i\) 个满足 \(c_i<b_{x_i}\) 的状态,因此我们可以在每个中间状态中累加一次贡献,而对于一个满足 \(\forall i,c_i<b_{x_i}\) 的 \(c_1,c_2,\cdots,c_m\),只要它到达了这个状态,它就肯定会被统计入答案中,因此我们要求的实际上是所有满足满足 \(\forall i,c_i<b_{x_i}\) 的 \(c_1,c_2,\cdots,c_m\),到达 \(c_1,c_2,\cdots,c_m\) 的概率。而显然对于固定的 \(c_1,c_2,\cdots,c_m\),到达 \(c_1,c_2,\cdots,c_m\) 的概率可用总方案数除以到达 \(c_1,c_2,\cdots,c_m\) 的方案数计算,即 \(\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\),第一项为多重组合数,即将 \(i\) 个 \(c_i\) 填入一排 \(c_1+c_2+\cdots+c_m\) 个数的方案数,第二项表示生成 \(c_i\) 个 \(i\) 的方案数,生成一个 \(i\) 的概率为 \(\dfrac{a_i}{\sum\limits_{x\in S}a_x}\),生成 \(c_i\) 个 \(i\) 的概率就是 \((\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\),很好理解。

因此我们有:

\[E(\min(T))=\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}
\]

将其带入答案计算式可得

\[\begin{aligned}ans&=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\\&=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod a_i^{c_i}\times(\dfrac{1}{\sum\limits_{x\in T}a_x})^{\sum c_i}\end{aligned}
\]

注意到 \(\sum a_i\) 是定值,\(\sum\limits_{x\in T}a_x,\sum c_i\) 都不会超过 \(400\),因此考虑 \(dp\),可以将其放入背包的状态中,设 \(dp_{i,j,k}\) 表示所有 \(T\subseteq\{1,2,3,\cdots,i\}\),\(\sum\limits_{x\in T}a_x=j\),\(\sum c_i=k\) 的 \((-1)^{|T|-1}\prod\dfrac{1}{c_i!}a_i^{c_i}\) 的和,转移就分 \(i\in T\) 和 \(i\notin T\) 转移即可,若 \(i\notin T\) 则 \(dp_{i,j,k}\leftarrow dp_{i-1,j,k}\),否则我们枚举 \(c_i<b_i\),那么 \(dp_{i,j,k}\leftarrow -dp_{i-1,j,k}\times\dfrac{1}{c_i!}a_i^{c_i}\),二者相加即可,初始值 \(dp_{0,0,0}=-1\)(因为空集的 \((-1)^{|T|+1}=-1\)),求答案就枚举 \(\sum\limits_{x\in T}a_x=j,\sum c_i=k\),然后用 \(dp_{n,j,k}\times(\sum a_i)\times\dfrac{1}{j^{k+1}}\times k!\) 更新答案即可,第一维可以优化到,时间复杂度 \(\sum a_i(\sum b_i)^2\),空间复杂度 \(\sum a_i\sum b_i\),可以通过此题。

const int MAXN=400;
const int MOD=998244353;
int n,a[MAXN+5],b[MAXN+5],sa,sb,dp[MAXN+5][MAXN+5];
int inv[MAXN+5],ifac[MAXN+5],fac[MAXN+5];
void init_fac(int n){
for(int i=(inv[0]=inv[1]=ifac[0]=fac[0]=1)+1;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) ifac[i]=1ll*ifac[i-1]*inv[i]%MOD,fac[i]=1ll*fac[i-1]*i%MOD;
}
int main(){
scanf("%d",&n);init_fac(MAXN);dp[0][0]=MOD-1;
for(int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]),sa+=a[i],sb+=b[i];
for(int i=1;i<=n;i++){
for(int j=sa;j>=a[i];j--) for(int k=sb;~k;k--)
for(int l=0,pw=1;l<=min(k,b[i]-1);l++,pw=1ll*pw*a[i]%MOD){
dp[j][k]=(dp[j][k]-1ll*dp[j-a[i]][k-l]*pw%MOD*ifac[l]%MOD+MOD)%MOD;
}
} int ans=0;
for(int i=1;i<=sa;i++) for(int j=0,pw=1;j<=sb;j++,pw=1ll*pw*inv[i]%MOD){
ans=(ans+1ll*dp[i][j]*pw%MOD*inv[i]%MOD*sa%MOD*fac[j]%MOD)%MOD;
} printf("%d\n",ans);
return 0;
}

Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)的更多相关文章

  1. AtCoder Grand Contest 038 简要题解

    从这里开始 比赛目录 Problem A 01 Matrix Code #include <bits/stdc++.h> using namespace std; typedef bool ...

  2. AtCoder Grand Contest 038 题解

    传送门 这场表现的宛如一个\(zz\) \(A\) 先直接把前\(b\)行全写成\(1\),再把前\(a\)列取反就行 const int N=1005; char mp[N][N];int n,m, ...

  3. AtCoder Grand Contest 038题解

    好久没更了 写点东西吧= = A 01Matrix 简单构造 左上角和右下角染成1其他染成0即可 #include<bits/stdc++.h> #define ll long long ...

  4. Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)

    洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...

  5. AtCoder Grand Contest 038

    目录 \(\bf A - 01 \ Matrix\) \(\bf B- Sorting \ a \ Segment\) \(\bf C-LCMs\) \(\bf D-Unique \ Path\) 这 ...

  6. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  7. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  8. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  9. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

随机推荐

  1. 保护模式篇——PAE分页

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  2. 分享一份软件测试项目实战(web+app+h5+小程序)

    大家好,我是谭叔. 本次,谭叔再度出马,给大家找了一个非常适合练手的软件测试项目,此项目涵盖web端.app端.h5端.小程序端,可以说非常之全面. 缘起 在这之前,谭叔已经推出了九套实战教程. 但是 ...

  3. 极速上手 VUE 3 —— teleport传送门组件

    一.teleport 介绍 teleport 传送门组件,提供一种简洁的方式,可以指定它里面的内容的父元素.通俗易懂地讲,就是 teleport 中的内容允许我们控制在任意的DOM中,使用简单. 使用 ...

  4. Redis:学习笔记-01

    Redis:学习笔记-01 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 1. Redis入门 2.1 ...

  5. Google Object detection配置与使用

    Google Object detection 前言: 本文记录了使用Google发布的Object detection(July 1st, 2019)接口,完成了对标注目标的检测.参考了很多博文,在 ...

  6. UltraSoft - Beta - Scrum Meeting 9

    Date: May 25th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 记录Scrum Meeting Liuzh 前端 用户忘记密码界面初稿完成 Kkk ...

  7. Noip模拟36 2021.8.11

    刚题的习惯还是改不了,怎么办??? T1 Dove打扑克 考场上打的动态开点线段树+并查集,考后发现自己像一个傻子,并查集就行.. 这几天恶补数据结构疯了 用树状数组维护后缀和,$siz_i$表示编号 ...

  8. 海思 core 电压动态调整

    http://www.eda365.com/forum.php?mod=viewthread&tid=108620&_dsign=5bee4dcb http://www.eda365. ...

  9. 单片机STM32的5个时钟源知识

    众所周知STM32有5个时钟源HSI.HSE.LSI.LSE.PLL,其实他只有四个,因为从上图中可以看到PLL都是由HSI或HSE提供的. 其中,高速时钟(HSE和HSI)提供给芯片主体的主时钟.低 ...

  10. Photoshop cc 绿色版 最新版 下载

    Photoshop cc 绿色版 下载 Photoshop cc 绿色版 最新版下载百度网盘下载 Photoshop 下载提取码: dh6z 作为一个程序员, 不懂点基本的作图都不配"新时代 ...