[cf1379F]Chess Strikes Back
考虑将$(2i-1,2j-1)$和$(2i,2j)$缩为一个点,记作$(i,j)$
对于每一个点,只能选$(2i-1,2j-1)$或$(2i,2j)$(显然不能都选),而这样恰好为$nm$个,因此必须要至少选择一个
对于每一个点,障碍的状态分为以下几类:
1.无障碍,这类点暂时不考虑
2.都有障碍,若存在此类点必然不合法
3.有一个障碍,分两类讨论:
(1)$(2i-1,2j-1)$上有障碍,即这个点只能选$(2i,2j)$,考虑$(i+1,j)$和$(i,j+1)$,也只能选这个点,因此即对于其右下角的点,都要选$(2i,2j)$;
(2)$(2i,2j)$上有障碍,类似的,对于其左上角的点,都要选$(2i-1,2j-1)$
矛盾在于存在一个点$(i_{1},j_{1})$在$(2i_{1}-1,2j_{1}-1)$上有障碍,$(i_{2},j_{2})$在$(2i_{2},2j_{2})$上有障碍,且满足$i_{1}\le i_{2}$、$j_{1}\le j_{2}$,那么对于$([i_{1},i_{2}],[j_{1},j_{2}])$这个矩形就无解了
(其实第2类也可以看作此类情况,即$i_{1}=i_{2}$且$j_{1}=j_{2}$)
通过set,可以求出对于所有$i$,在$(2i-1,2j-1)$上有障碍的最小的$j$和在$(2i,2j)$上有障碍的最大的$j$
对于插入可以很好的支持,即判断新来的点是否会产生即可(通过线段树维护第一个前缀最小值以及第二个后缀最大值),那么删除通过线段树分治即可


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define pii pair<int,int>
8 #define mp make_pair
9 #define fi first
10 #define se second
11 map<int,int>mat[N<<1];
12 map<int,int>::iterator it;
13 multiset<int>s1[N],s2[N];
14 vector<pii>v[N<<2];
15 pii f[N<<2];
16 int n,m,q,x,y,ans[N];
17 void add(int k,int l,int r,int x,int y,pii z){
18 if ((l>y)||(x>r))return;
19 if ((x<=l)&&(r<=y)){
20 v[k].push_back(z);
21 return;
22 }
23 add(L,l,mid,x,y,z);
24 add(R,mid+1,r,x,y,z);
25 }
26 pii merge(pii x,pii y){
27 return mp(min(x.fi,y.fi),max(x.se,y.se));
28 }
29 pii get(int k){
30 int x=m+1,y=0;
31 if (s1[k].size())x=(*s1[k].begin());
32 if (s2[k].size())y=(*--s2[k].end());
33 return mp(x,y);
34 }
35 void update(int k,int l,int r,int x){
36 if (l==r){
37 f[k]=get(x);
38 return;
39 }
40 if (x<=mid)update(L,l,mid,x);
41 else update(R,mid+1,r,x);
42 f[k]=merge(f[L],f[R]);
43 }
44 pii query(int k,int l,int r,int x,int y){
45 if ((l>y)||(x>r))return mp(m+1,0);
46 if ((x<=l)&&(r<=y))return f[k];
47 return merge(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
48 }
49 void dfs(int k,int l,int r){
50 if (!ans[0])return;
51 for(int i=0;i<v[k].size();i++){
52 x=v[k][i].fi,y=v[k][i].se;
53 if (y&1){
54 s1[(x+1)/2].insert((y+1)/2);
55 if (query(1,1,n,(x+1)/2,n).se>=(*s1[(x+1)/2].begin()))ans[0]=0;
56 }
57 else{
58 s2[x/2].insert(y/2);
59 if (query(1,1,n,1,x/2).fi<=(*--s2[x/2].end()))ans[0]=0;
60 }
61 update(1,1,n,(x+1)/2);
62 }
63 if (l==r)ans[l]=ans[0];
64 else{
65 dfs(L,l,mid);
66 dfs(R,mid+1,r);
67 }
68 for(int i=0;i<v[k].size();i++){
69 x=v[k][i].fi,y=v[k][i].se;
70 if (y&1)s1[(x+1)/2].erase(s1[(x+1)/2].find((y+1)/2));
71 else s2[x/2].erase(s2[x/2].find(y/2));
72 update(1,1,n,(x+1)/2);
73 }
74 ans[0]=1;
75 }
76 int main(){
77 scanf("%d%d%d",&n,&m,&q);
78 for(int i=1;i<=q;i++){
79 scanf("%d%d",&x,&y);
80 if (!mat[x][y])mat[x][y]=i;
81 else{
82 add(1,1,q,mat[x][y],i-1,mp(x,y));
83 mat[x][y]=0;
84 }
85 }
86 for(int i=1;i<=2*n;i++)
87 for(it=mat[i].begin();it!=mat[i].end();it++)
88 if ((*it).se)add(1,1,q,(*it).se,q,mp(i,(*it).fi));
89 for(int i=1;i<=n;i++)update(1,1,n,i);
90 ans[0]=1;
91 dfs(1,1,q);
92 for(int i=1;i<=q;i++)
93 if (ans[i])printf("YES\n");
94 else printf("NO\n");
95 }
[cf1379F]Chess Strikes Back的更多相关文章
- hdu4405 Aeroplane chess
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 5742 Chess SG函数博弈
Chess Problem Description Alice and Bob are playing a special chess game on an n × 20 chessboard. ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
- HDU 4832 Chess (DP)
Chess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 2016暑假多校联合---A Simple Chess
2016暑假多校联合---A Simple Chess Problem Description There is a n×m board, a chess want to go to the po ...
- HDU5724 Chess(SG定理)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5724 Description Alice and Bob are playing a spe ...
- BFS AOJ 0558 Chess
AOJ 0558 Chess http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0558 在H * W的地图上有N个奶酪工厂,每个 ...
- SGU 319. Kalevich Strikes Back (线段树)
319. Kalevich Strikes Back Time limit per test: 0.5 second(s)Memory limit: 65536 kilobytes input: st ...
- Codeforces Round #379 (Div. 2) D. Anton and Chess 水题
D. Anton and Chess 题目连接: http://codeforces.com/contest/734/problem/D Description Anton likes to play ...
随机推荐
- react之组件数据挂在方式
1.属性(props) 组件间传值,在React中是通过只读属性 props 来完成数据传递的. props:接受任意的入参,并返回用于描述页面展示内容的 React 元素. import React ...
- 自定义view---仪表盘--kotlin
我们知道一个自定义view一般来说需要继承view或者viewGroup并实现onMeasure, onLayout, onDraw方法. 其中onMeasure用于测量计算该控件的宽高, onLay ...
- 一个神秘的oj2587 你猜是不是dp(线段树优化建图)
哇 这难道不是happiness的翻版题嘛? 从\(S\)向一个点连染成白色的收益 从这个点向\(T\)连染成黑色的收益 对于额外的收益,建一个辅助点,跟区间内的每个点连\(inf\),然后向S/T, ...
- Oracle job的用法
1.Broken()过程更新一个已提交的工作的状态,典型地是用来把一个已破工作标记为未破工作. 这个过程有三个参数:job .broken与next_date. PROCEDURE Broken (j ...
- pycharm中的terminal和Windows命令提示符有什么区别?二者用pip安装的包是不是位于相同位置?
那要看pycharm使用了什么shell,可以在设置->工具->终端里查看shell path.如果使用的是cmd.exe那就没区别.pycharm终端和Windows命令提示符用pip安 ...
- Beta阶段第十次会议
Beta阶段第十次会议 时间:2020.5.26 完成工作 姓名 完成工作 难度 完成度 ltx 1.修正小程序新闻bug2.修正小程序认证bug 中 80% xyq 1.上传信息编辑部分代码到服务器 ...
- BUAA SE 软件案例分析-CSDN
Q A 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分析 我在这个课程的目标是 系统地学习软件工程开发知识,掌握相关流程和技术,提升 ...
- mybatis自定义分页拦截器
最近看了一下项目中代码,发现系统中使用的mybatis分页使用的是mybatis自带的分页,即使用RowBounds来进行分页,而这种分页是基于内存分页,即一次查出所有的数据,然后再返回分页需要的数据 ...
- 2021.8.5考试总结[NOIP模拟31]
暴力打满直接rk3? T1 Game 想了一万种贪心和两万种$hack$. 可以先用最显然的贪心求出最高得分是多少.(从小到大用最小的大于$b_i$的$a$得分) 然后用一棵权值线段树维护值域内$a$ ...
- 我的一些JAVA基础见解
这个学期学习JAVA基础课,虽说之前都自学过,但在学习时仍可以思考一些模糊不清的问题,可以更深一步的思考.在这里写下一些需要深入的知识点,对小白们也很友好~ 一.Java数据类型 1.基本数据类型 这 ...