考虑一个构造:令初始$2^{k}\times 2^{k}$的矩阵为$A$(下标从0开始),再构造一个矩阵$T$,满足仅有$T_{x_{i},y_{i}}=1$(其余位置都为0),定义矩阵卷积$\otimes$即
$$
(A\otimes B)_{x,y}=\bigoplus_{x_{1}+x_{2}\equiv x(mod\ 2^{k}),y_{1}+y_{2}\equiv y(mod\ 2^{k})}A_{x_{1},y_{1}}B_{x_{2},y_{2}}
$$
(不难证明这个卷积运算有交换律和结合律)

令$F$为答案矩阵,即$F_{x,y}$为在$(x,y)$上所选择的$p$(多次选择异或起来即可),根据定义有$F\otimes T=A$

考虑$\otimes$运算的单位矩阵$e$,即满足对于任意矩阵$A$,$A\otimes e=A$,不难发现$e_{x,y}=[x=0][y=0]$即满足此条件,以下即以此为单位矩阵

通过单位矩阵,我们就可以对矩阵$T$求逆了,若其求逆结果为$T^{-1}$(即满足$T\otimes T^{-1}=e$的矩阵因此),将上式两边同乘$T^{-1}$即有$F=A\otimes T^{-1}$

考虑如何求出$T^{-1}$,似乎并不太好求,那么再考虑一个问题,即$T^{2}$(即$T\otimes T$)是一个怎样的矩阵:

根据定义中的式子,注意到当交换$x_{1}$和$x_{2}$、$y_{1}$和$y_{2}$后,两者所贡献的位置以及权值相同,而$\oplus$具有自反性,因此即最终结果为0

但特别的,当$x_{1}=x_{2}$且$y_{1}=y_{2}$,显然是不能交换的,即
$$
(T^{2})_{x,y}=\bigoplus_{2x'\equiv x(mod\ 2^{k}),2y'\equiv y(mod\ 2^{k})}T_{x',y'}^{2}=\bigoplus_{2x'\equiv x(mod\ 2^{k}),2y'\equiv y(mod\ 2^{k})}T_{x',y'}
$$
(最后一步由于$T$中任意元素都为0或1,因此$T_{x',y'}^{2}=T_{x',y'}$)

上面这个式子通俗的来说,也就是将$T$中的每一个在$(x,y)$的1都移动到$(2x\ mod\ 2^{k},2y\ mod\ 2^{k})$,当一个位置有两个1可以相互抵消

当然我们也可以先不抵消,重复上述过程,则有
$$
(T^{2^{k}})_{x,y}=\bigoplus_{2^{k}x'\equiv x(mod\ 2^{k}),2^{k}y'\equiv y(mod\ 2^{k})}T_{x',y'}=[x=0][y=0]\bigoplus_{x,y}T_{x,y}=[x=0][y=0][t\ mod\ 2]
$$
(显然$T$中1的个数恰好为$t$)

根据$t$是奇数,即$T^{2^{k}}=e$,那么$T\otimes T^{2^{k}-1}=e$,即$T^{-1}=T^{2^{k}-1}$

关于如何计算$A\otimes T^{2^{k}-1}$,如果暴力计算两个矩阵复杂度是$o(2^{4k})$,即使用快速幂优化$T^{2^{k}-1}$的计算,复杂度也是$o(k2^{4k})$,无法通过

但是,注意到$\forall 0\le i\le k,T^{2^{i}}$至多只有$t$个1(即使移动到的位置都不重合,没有抵消)

根据$2^{k}-1=\sum_{i=0}^{k-1}2^{i}$,再根据结合律所求即$A\otimes T^{1}\otimes T^{2}\otimes...\otimes T^{2^{k-1}}$,按照运算顺序从左到右依次乘,每一次复杂度为$o(t2^{2k})$,总复杂度即$o(tk2^{2k})$

(每一个$T^{2^{i}}$怎么求前面应该也已经说明了)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 int n,m,ans,x[N],y[N];
5 long long a[N][N],b[N][N];
6 void mul(){
7 memset(b,0,sizeof(b));
8 for(int i=0;i<(1<<n);i++)
9 for(int j=0;j<(1<<n);j++)
10 for(int k=1;k<=m;k++)b[(x[k]+i)%(1<<n)][(y[k]+j)%(1<<n)]^=a[i][j];
11 memcpy(a,b,sizeof(a));
12 }
13 int main(){
14 scanf("%d",&n);
15 for(int i=0;i<(1<<n);i++)
16 for(int j=0;j<(1<<n);j++)scanf("%lld",&a[i][j]);
17 scanf("%d",&m);
18 for(int i=1;i<=m;i++)scanf("%d%d",&x[i],&y[i]);
19 for(int i=0;i<n;i++){
20 mul();
21 for(int j=1;j<=m;j++){
22 x[j]=2*x[j]%(1<<n);
23 y[j]=2*y[j]%(1<<n);
24 }
25 }
26 for(int i=0;i<(1<<n);i++)
27 for(int j=0;j<(1<<n);j++)
28 if (a[i][j])ans++;
29 printf("%d",ans);
30 }

[cf1270I]Xor on Figures的更多相关文章

  1. Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset

    有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...

  2. [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字

    Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...

  3. 二分+DP+Trie HDOJ 5715 XOR 游戏

    题目链接 XOR 游戏 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  4. BZOJ 2115 【Wc2011】 Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  5. xor和gates的专杀脚本

    前段时间的一次样本,需要给出专杀,应急中遇到的是linux中比较常见的两个家族gates和xor. 首先是xor的专杀脚本,xor样本查杀的时候需要注意的是样本的主进程和子进程相互保护(详见之前的xo ...

  6. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  7. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

  8. BC之Claris and XOR

    http://acm.hdu.edu.cn/showproblem.php?pid=5661 Claris and XOR Time Limit: 2000/1000 MS (Java/Others) ...

  9. 异或链表(XOR linked list)

    异或链表(Xor Linked List)也是一种链式存储结构,它可以降低空间复杂度达到和双向链表一样目的,任何一个节点可以方便的访问它的前驱节点和后继结点.可以参阅wiki 普通的双向链表 clas ...

随机推荐

  1. docker之swarm容器部署及运维

    1.概念 Docker Swarm 是 Docker 的集群管理工具.它将 Docker 主机池转变为单个虚拟 Docker 主机. Docker Swarm 提供了标准的 Docker API,所有 ...

  2. linux kill信号详解

    大家对kill -9 肯定非常熟悉,在工作中也经常用到.特别是你去重启tomcat时.可是多半看来,我们对-9的理解只是表面而已. 很少有人(包括我)认真的去了解一下 kill -n 这个n到底是什么 ...

  3. python中return的返回和执行

    1 打印函数名和打印函数的执行过程的区别 例子1.1 def a(): print(111) print(a) # 打印a函数的内存地址,不会对a函数有影响,a函数不会执行 print(a()) # ...

  4. Java(20)参数传递之类名、抽象类、接口

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201632.html 博客主页:https://www.cnblogs.com/testero ...

  5. Java(33)IO流的介绍&字节流

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228446.html 博客主页:https://www.cnblogs.com/testero ...

  6. javascript-jquery对象的事件处理

    一.页面加载 1.页面加载顺序:先加载<head></head>之间的内容,然后加载<body></body>之间的内容 直接在head之间书写jque ...

  7. mac无坑安装nginx

    mac无坑安装nginx 首先需要mac下有一个缺失的软件包的管理器------->homebrew 1.打开终端输入 brew update 说明homebrew已经安装好了 2.继续执行以下 ...

  8. Selenium获取动态图片验证码

    Selenium获取动态图片验证码 关于图片验证码的文章,我想大家都有一定的了解了. 在我们做UI自动化的时候,经常会遇到图片验证码的问题. 当开发不给咱们提供万能验证码,或者测试第三方网站比如知乎的 ...

  9. 如何用PADS进行PCB设计?这6步就够了

    在使用PADS进行PCB设计的过程中,需要对印制板的设计流程以及相关的注意事项进行重点关注,这样才能更好的为工作组中的设计人员提供系统的设计规范,同时也方便设计人员之间进行相互的交流和检查. 02 设 ...

  10. VMware Workstation 16.2 Pro for Linux SLIC 2.6 & Unlocker

    请访问原文链接:https://sysin.org/blog/vmware-workstation-16-linux-slic/,查看最新版.原创作品,转载请保留出处. 作者:gc(at)sysin. ...