题目分析:

答案肯定是链,否则可以把枝干放到主干。

去除一直存在的位,这样0位占满时就会结束。

用$f[S]$表示0位填埋情况,每次转移是它的一个子集,我们考虑可否转移。

再用$g[S]$存储转移是否合法,用滑稽果填充$g$数组。不一定要完全满足条件,因为有其它方案更优,无影响。

代码:

 #include<bits/stdc++.h>
using namespace std; #define RI register const int maxn = ; int n,a[maxn],bit=,maxx;
long long ans = ;
int cnt = (<<)-,res=; int f[<<];
int g[<<],vol[<<];
char buffer[], *buf=buffer;
inline void in(int &x) {
while(*buf>'' || *buf<'') ++buf;
for(x=;*buf>=''&&*buf<=''; ++buf) x=x*+*buf-'';
} inline void read(){
in(n);
for(RI int i=;i<=n;i++) in(a[i]),cnt &= a[i];
for(RI int i=;i<=n;i++) a[i] -= cnt,maxx=max(maxx,a[i]),res |= a[i];
ans += 1ll*cnt*n;
} inline void init(){
while((bit<<)<=maxx)bit<<=; bit<<=; res = (bit--res);
for(RI int i=;i<=n;i++) vol[bit--a[i]]=;
for(RI int i=bit-;i>=;i--){
if(!vol[i] || g[i]) continue;
for(RI int j=i;j;j=((j-)&i)){g[j]=;}
}
} inline void work(){
memset(f,0x3f,sizeof(f)); f[] = ;
for(RI int now=;now<bit;now++){
if(f[now] > 1e6) continue;
int dt = bit--now;
for(RI int i=dt;i;i=((i-)&dt)){
if(g[i]){f[now+i] = min(f[now+i],f[now]+bit--(now+i));};
}
}
ans += f[bit-];
printf("%lld",ans);
} int main(){
fread(buffer, , (sizeof buffer)-, stdin);
read();
init();
work();
return ;
}

UOJ370 滑稽树上滑稽果 【状压DP】的更多相关文章

  1. U68464 滑稽树上滑稽果(guo)

    U68464 滑稽树上滑稽果(guo) 题目描述 小小迪有 n 个约会对象,每个对象有一个约会时长 p[i],小小迪 想尽可能多的去完成他的约会(假设小小迪可以瞬移),每个对象还有 一个忍耐时间 q[ ...

  2. 多米诺骨牌放置问题(状压DP)

    例题: 最近小A遇到了一个很有趣的问题: 现在有一个\(n\times m\)规格的桌面,我们希望用\(1 \times 2\)规格的多米诺骨牌将其覆盖. 例如,对于一个\(10 \times 11\ ...

  3. CCPC-Wannafly Winter Camp Day3 Div1 - 精简改良 - [生成树][状压DP]

    题目链接:https://zhixincode.com/contest/14/problem/D?problem_id=206 样例输入 1  5 5 1 2 1 1 3 1 2 4 1 2 5 1 ...

  4. 刷题总结——树有几多愁(51nod1673 虚树+状压dp+贪心)

    题目: lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输 ...

  5. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  6. 状态压缩动态规划(状压DP)详解

    0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...

  7. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  8. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

  9. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  10. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

随机推荐

  1. 对Vuejs框架原理名词解读

    渐进式()+虚拟Dom: vue-cli 遍历Dom:先序遍历DOM树的5种方法! 三层架构+m v c +mvp+m v vm()+MVC,MVP 和 MVVM 的图示 剖析vue MVVM实现原理 ...

  2. javaScript 删除本地cookie删不了

    一.js删除本地cookie无法删除 今天发现自己真的蠢爆了! 以下为cookie定义: 1.设置Cookie的key   2.设置Cookie的key-value值   3.过期时间-自定义(一般在 ...

  3. 修改eclipce操作权限

    <dependencies> <dependency> <groupId>jdk.tools</groupId> <artifactId>j ...

  4. winform启动界面+登录窗口

    需求场景:先展示启动界面,然后打开登录界面,如果登录成功就跳转到主界面 首先在程序的入口路径加载启动界面,使用ShowDialog显示界面, 然后在启动界面中添加定时器,来实现显示一段时间的效果,等到 ...

  5. Oracle 表空间的创建与管理

    Oracle数据库创建之后有一些默认的表空间随之被创建,查询数据字典 dba_data_files 可以得到数据库当前的所有表空间信息. select * from v$tablespace; sel ...

  6. Oracle 表空间不足引起的问题及解决方法

    -- 1 向数据库导入数据时报了ORA-01653: unable to extend table错误,网上查了下原因是由于表空间不足引起的: 查询表空间使用情况语句 select a.tablesp ...

  7. Azure系列2.1.3 —— BlobEncryptionPolicy

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  8. taro 与uni-app对比

    https://www.jianshu.com/p/03e08399587e   (copy)

  9. jq简单仿上传文件

    html: <div> <input id="lefile" type="file" style="display:none&quo ...

  10. centOS 7下无法启动网络(service network start)错误解决办法

    今天在centOS 7下更改完静态ip后发现network服务重启不了,翻遍了网络,尝试了各种方法,终于解决了. 现把各种解决方法归纳整理,希望能让后面的同学少走点歪路... 首先看问题:执行serv ...