题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537

一个H-number是所有的模四余一的数。

如果一个H-number是H-primes 当且仅当它的因数只有1和它本身(除1外)。

一个H-number是H-semi-prime当且仅当它只由两个H-primes的乘积表示。

H-number剩下其他的数均为H-composite。

给你一个数h,问1到h有多少个H-semi-prime数。
思路  :直接暴力打表 因为h <=1e6  而  打表的复杂度是 log4(h)*log4(h)所以 不会超时  不要误以为是n^2的复杂度

 #include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<iostream>
using namespace std;
const int maxn=1e6+;
int H_primes[maxn+];
int vis[maxn+];
int ans[maxn];
int cnt;
void init(){
cnt=;
for(int i=;i<=maxn;i+=){
for(int j=;j<=maxn;j+=){
int mul=i*j;
if(mul>maxn)break;
if(H_primes[i]==&&H_primes[j]==)
H_primes[mul]=;
else H_primes[mul]=-;
} }
for(int k=;k<=maxn;k++){
if(H_primes[k]==)
cnt++;
ans[k]=cnt;
}
}
int main(){
init();
int n;
while(scanf("%d",&n)==&&n){
printf("%d %d\n",n,ans[n]);
}
return ;
}

Semi-prime H-numbers POJ - 3292 打表(算复杂度)的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  4. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  5. Sum of Consecutive Prime Numbers(素数打表+尺取)

    Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...

  6. UVA1210Sum of Consecutive Prime Numbers(素数打表 + 连续和)

    题目链接 题意:输入一个数n (2 <= n <= 10000) 有多少种方案可以把n写成若干个连续素数之和 打出10000之内的素数表,然后再打出每个可能得到的和的方案数的表 #incl ...

  7. Greedy:Sum of Consecutive Prime Numbers(POJ 2739)

     素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...

  8. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  9. UVALive 7279 Sheldon Numbers (暴力打表)

    Sheldon Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/127406#problem/H Description According t ...

随机推荐

  1. 不容错过的超赞项目管理PPT

    不容错过的超赞项目管理PPT(转载) 大公司的一个好处,是各个领域都有牛人,可以为你提供经验分享交流.腾讯庞大的培训体系更是保证了:如果你想学点什么东西,你总可以学到.腾讯内部资源30页PPT曝光 — ...

  2. Log4J.xml配置详解

    原文地址:https://blog.csdn.net/genyizha/article/details/74502812 Appender Appender:日志输出器,配置日志的输出级别.输出位置等 ...

  3. Centos 7 修改系统时区

    timedatectl status Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12-25 02:52:10 UTC R ...

  4. matplotlib 入门之Image tutorial

    文章目录 载入图像为ndarray 显示图像 调取各个维度 利用cmp 获得像素点的RGB的统计 通过clim来限定rgb 标度在下方 插值,马赛克,虚化 matplotlib教程学习笔记 impor ...

  5. urllib库

    python内置的最基本的HTTP请求库,有以下四个模块: urllib.request 请求模块 urllib.error 异常处理模块 urllib.parse url解析模块 urllib.ro ...

  6. 使用fiddlercore修改网页的返回内容

    最近研究了一下FiddlerCore,发现这是个非常强大的工具.可以用来采集网页.修改网页数据.开发页游外挂等等. 使用这个工具,需要掌握一定的html和http知识,官方网站上也有例子可以下载. 看 ...

  7. 安全测试学习之bWAPP环境搭建

    安装环境:window7+IIS+mysql+php bWAPP下载地址:https://sourceforge.net/projects/bwapp/files/bee-box/  ,直接点击Dow ...

  8. toTree

    // js实现树级递归, // 通过js生成tree树形菜单(递归算法) const data = [ { id: 1, name: "办公管理", pid: 0 }, { id: ...

  9. Satis搭建composer私有库(自定义下载目录)

    在我们的日常php开发中需要使用大量的第三方包和类库, 怎么管理是一个问题, 我们用的Yii2框架, 但是并没有把composer用起来, 由于最近更换为docker部署项目, 于是想起来用compo ...

  10. 关于spring的源码的理解

    从最基础的Hello World开始. spring的Hello World就三行代码: public void test() { ApplicationContext context = new C ...