古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用
/*
古代猪文:Lucas定理+中国剩余定理
999911658=2*3*4679*35617
Lucas定理:(m,n)=(sp,tp)(r,q) %p
中国剩余定理:x=sum{si*Mi*ti}+km
先求出sum{C(d,n)}%p[i]=a[i]
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 999911659
#define maxn 100005
ll m[]={,,,};
ll f[][maxn],a[],d[maxn];
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){x=,y=;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x;x=y,y=z-a/b*y;
return d;
}
ll inv(ll a,ll Mod){
ll x,y;
exgcd(a,Mod,x,y);
return (x+Mod)%Mod;
}
ll C(int i,ll n,ll k,ll p){return f[i][n]*inv(f[i][k]*f[i][n-k]%p,p)%p;}
ll lucas(int i,ll n,ll k,ll p){
int res=;
while(n&&k){
res=res*C(i,n%p,k%p,p)%p;
if(res==)return ;
n/=p,k/=p;
}
return res;
}
ll Pow(ll x,ll n,ll Mod){
ll res=;
while(n){
if(n%)res=res*x%Mod;
n>>=;x=x*x%Mod;
}
return res;
}
ll china(int n,ll a[],ll m[]){
ll M=,res=;
for(int i=;i<n;i++)M*=m[i];
for(int i=;i<n;i++){
ll w=M/m[i],x,y;
exgcd(w,m[i],x,y);
res=(res+x*w*a[i])%M;
}
return (res+M)%M;
} int main(){
ll n,g;
cin>>n>>g;
if(g==mod){puts("");return ;}
int tot=;
for(int i=;i*i<=n;i++)
if(n%i==){//求n的所有质因子
if(i*i==n)d[tot++]=i;
else d[tot++]=i,d[tot++]=n/i;
}
for(int i=;i<;i++){
f[i][]=;
for(int j=;j<m[i];j++)
f[i][j]=f[i][j-]*j%m[i];
}
for(int i=;i<tot;i++)
for(int j=;j<;j++)
a[j]=(a[j]+lucas(j,n,d[i],m[j]))%m[j];;
ll ans=china(,a,m);
cout<<Pow(g,ans,mod);
}
古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- luogu 2480 古代猪文 数论合集(CRT+Lucas+qpow+逆元)
一句话题意:G 的 sigma d|n C(n d) 次幂 mod 999911659 (我好辣鸡呀还是不会mathjax) 分析: 1.利用欧拉定理简化模运算 ,将上方幂设为x,则x=原式mod ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...
- P2480 [SDOI2010]古代猪文
P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...
- BZOJ1951 古代猪文 【数论全家桶】
BZOJ1951 古代猪文 题目链接: 题意: 计算\(g^{\sum_{k|n}(^n_k)}\%999911659\) \(n\le 10^9, g\le 10^9\) 题解: 首先,根据扩展欧拉 ...
- BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
随机推荐
- 谈谈==和equals
== 先看Java /** * Author:Mr.X * Date:2017/10/8 23:17 * Description: * * @==判断两个内存地址是否相同 * @基础类型有(char, ...
- java json 转换
1.直接输出: 2.字符串 通过eval转换输出,里面涉及到一个转义问题,还要注意eval的用法里面需要加"("+ + ")" 3.
- Handler的postDelayed的实现方法
暂存,待归纳 https://www.jianshu.com/p/f5f710d55255 https://blog.csdn.net/qingtiantianqing/article/details ...
- Fresco,Glide,Picasso
1.Picasso和Glide的with后面的参数不同 Picasso.with(这里只能传入上下文) . Glide.with,后面可以传入上下文,Application实例,Activit ...
- 20165237 2017-2018-2 《Java程序设计》第四周考试补做及2-3章编程题
20165237 2017-2018-2 <Java程序设计>第四周考试补做及2-3章编程题 测试JDB: 用JDB调试上一个程序,输入1.2.3: 2-3章编程题代码托管 (程序的运行结 ...
- 20165234 2017-2018-2《Java程序设计》课程总结
2017-2018-2<Java程序设计>课程总结 一.作业链接汇总 每周作业链接 预备作业一:我期望的师生关系 预备作业二:学习基础和C语言基础调查 预备作业三:Linux安装及学习 第 ...
- Debian 9 strech 安装 ROS lunar
1. 配置源 按照我以前的博客配置或者按照wiki上的配置. 2. sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(ls ...
- A Light CNN for Deep Face Representation with Noisy Labels
承接上一篇博客.该论文思路清晰,实验充分,这里大致写一些比较不错的idea.从标题就能看出本文的主要贡献:轻量.鲁棒.利用一个轻量CNN从大规模数据且含大量噪声中来学习一个深度面部表征. 直接谈谈贡献 ...
- Linux电源管理(7)_Wakeup events framework【转】
转自:http://www.wowotech.net/pm_subsystem/wakeup_events_framework.html 1. 前言 本文继续“Linux电源管理(6)_Generi ...
- Sql Server中的数据类型和Mysql中的数据类型的对应关系(转)
Sql Server中的数据类型和Mysql中的数据类型的对应关系(转):https://blog.csdn.net/lilong329329/article/details/78899477 一.S ...