“类欧几里得算法”第一题 sum

【题意】

给入\(n,r\),求\(\sum_{d=1}^n(-1)^{\lfloor d\sqrt r \rfloor}\)。

【分析】

只需要考虑所有\(d\)中,\(\lfloor d\sqrt r\rfloor\)为偶数的个数。显然\(\lfloor x\rfloor\)为偶数\(\Leftrightarrow \lfloor x\rfloor=2\times\lfloor\frac{x}{2}\rfloor\)。 那么原式可以改写为:

\[\sum_{d=1}^n 1-2\times(\lfloor d\sqrt r\rfloor\bmod 2)=\sum_{d=1}^n 1-2\times(\lfloor d\sqrt r\rfloor-2\times\lfloor\frac{d\sqrt r}{2}\rfloor)\\
=n-2\times\sum_{d=1}^n\lfloor d\sqrt r\rfloor+4\times\sum_{d=1}^n\lfloor\frac{d\sqrt r}{2}\rfloor
\]

不妨设\(f(a,b,c,n)=\sum_{d=1}^n\lfloor d\times\frac{a\sqrt r+b}{c}\rfloor\),那么原式即为

\[n-2\times f(1,0,1,n)+4\times f(1,0,2,n)
\]

考虑关于\(f(a,b,c,n)\)的算法,(开始扣题了),设\(k=\frac{a\sqrt r +b}{c}\)。

当\(k\ge1\)时,\(k\)可以拆为一个正数+小于1的非负实数,即

\[f(a,b,c,n)=\sum_{d=1}^n \lfloor d\times k\rfloor=\sum_{d=1}^n d\times\lfloor k\rfloor+\lfloor d\times(k-\lfloor k\rfloor)\rfloor\\
=\frac{n(n+1)}{2}\lfloor k\rfloor+\sum_{d=1}^n\lfloor d\times\frac{a\sqrt r+b-\lfloor k\rfloor\times c}{c}\rfloor\\
=\frac{n(n+1)}{2}\lfloor k\rfloor+f(a,b-\lfloor k\rfloor\times c,c,n)
\]

当\(k<1\)时,(比如上面递归的那层),可以看作是满足

\[\begin{cases}
0<x\le n\\
0<y\le x\times k\\
x\in Z\\
y\in Z
\end{cases}
\]

的点数。考虑再矩形\((1,1)(n,\lfloor n\times k\rfloor)\)内容斥可得个数为\(n\times\lfloor n\times k\rfloor\) 减去左上三角的部分,而那部分可当作是\(y=x\times k,\ x\in[1,n]\)的反函数\(y=x\times \dfrac{1}{k}, x\in[1,\lfloor n\times k\rfloor]\)。

其中\(\dfrac{1}{k}=\dfrac{c}{a\sqrt r+b}=\dfrac{c(a\sqrt r-b)}{(a\sqrt r+b)(a\sqrt r-b)}=\dfrac{ac\sqrt r-bc}{a^2r-b^2}\)。

\[f(a,b,c,n)=n\times\lfloor n\times k\rfloor-f(ac,-bc,a^2r-b^2,\lfloor n\times k\rfloor)
\]

可以发现,情况一二交替递归,且每轮的总的变化与欧几里得算法相似,故知其复杂度为\(\log​\)级的。

难度海星。。

然而当\(r\)为完全平方数时需要单独算,大概会爆LL吧。。

#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL n,r;
double x;
LL f(LL a,LL b,LL c,LL n) {
if(!n) return 0;
LL d=__gcd(__gcd(a,b),c);
a/=d, b/=d, c/=d;
double k=(a*x+b)/c;
if(k>=1) return n*(n+1)/2*(LL)(k)+f(a,b-(LL)(k)*c,c,n);
else return n*(LL)(n*k)-f(a*c,-b*c,a*a*r-b*b,(LL)(n*k));
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&r);
x=sqrt(r);
LL c=x;
if(c*c==r) {
if(c&1) printf("%lld\n",n-2*((n+1)/2));
else printf("%lld\n",n);
}
else printf("%lld\n",n-2*f(1,0,1,n)+4*f(1,0,2,n));
}
return 0;
}

[P5172] Sum的更多相关文章

  1. LeetCode - Two Sum

    Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...

  2. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  3. Leetcode 笔记 112 - Path Sum

    题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. BZOJ 3944 Sum

    题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...

  6. [LeetCode] Path Sum III 二叉树的路径和之三

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

  7. [LeetCode] Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  8. [LeetCode] Split Array Largest Sum 分割数组的最大值

    Given an array which consists of non-negative integers and an integer m, you can split the array int ...

  9. [LeetCode] Sum of Left Leaves 左子叶之和

    Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...

随机推荐

  1. this()基础用法

    this()表示调用构造方法,此种调用只能用在构造方法中,即构造方法中调用构造方法this(实参). 1.this().this(实参)必须方法构造方法的第一行 2.在有参数构造方法中调用无参数构造方 ...

  2. Python学习——1

    我是一名刚入IT行业的小白,目前主要是做网络运维这一块.曾经总是认为我是做网络运维的,学习代码干啥啊?后来就慢慢发现,传统的运维方式让我的效率好像不如别人效率高,关键还TM看别人比我更轻松.每一个网络 ...

  3. Asp.net Zero 应用实战-最初部署问题

    此时用的是aspnet-zero-core-4.3.0 1.前两天vs2017刚刚最新升级了,打开后就报错,然后就根据提示把每个项目文件中添加了 <PropertyGroup> <E ...

  4. 【机器学习】主成分分析法 PCA (II)

    主成分分析法(PAC)的优化——选择主成分的数量 根据上一讲,我们知道协方差为① 而训练集的方差为②. 我们希望在方差尽可能小的情况下选择尽可能小的K值. 也就是说我们需要找到k值使得①/②的值尽可能 ...

  5. 《Miracle_House》团队项目系统设计改进

    一.团队项目系统设计改进: 1.分析项目系统设计说明书初稿的不足,特别是软件系统结构模型建模不完善内容: 对于原文档中,设计图中存在的错误以及文字描述不准确的地方进行了修改. 2. 团队项目Githu ...

  6. Codeforces Round #538 (Div. 2) CTrailing Loves (or L'oeufs?)

    这题明白的意思就是求n!在b进制下的后缀零的个数. 即最大的n!%(b^k)==0的k的值.我们需要将如果要构成b这个数,肯定是由一个个质因子相乘得到的.我们只需要求出b的质因子,然后分析n!中可以组 ...

  7. 从文件中读取数组数据————Java

    自己总结一下Java文件的读取类似数组数据的方法,自己可以快速查看. 一.规整化数据: 对于数组数据是一一对应的情况 ArrayList<String> arrayList = new A ...

  8. svn的基本使用方法

    一,svn的介绍 Subversion(SVN) 是一个开源的版本控制系統, 也就是说 Subversion 管理着随时间改变的数据. 这些数据放置在一个中央资料档案库(repository) 中. ...

  9. python线程的同步事件Event

    Event对象: 用于线程间的通信,某个线程需要根据其他线程的状态来判断自己的下一步操作. Event内部定义了一个全局变量:_flag,默认为False. 当_flag = False时,会阻塞当前 ...

  10. NotePad++ 添加HEX-Editor插件

    步骤: 一.下载插件 https://github.com/chcg/NPP_HexEdit/releases 二.选择插件版本 Notepad 官网客服提示:32bit Notepad++可以使用常 ...