How many integers can you find

Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 

Input

  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 

Output

  For each case, output the number.
 

Sample Input

12 2 2 3
 

Sample Output

7
分析:这几天练容斥有感觉,知道是容斥,但是却有问题,容斥是 互质的数,然后对于2,4这样的数就不会做了,太肤浅了,直接求最小公倍数啊,对啊,互质的相乘就是因为最小公倍数就是乘积啊=_=,弱!
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
int num[], n, m, a[];
LL res;
LL gcd(LL a, LL b)
{
if (a == )
return b;
return gcd(b % a, a);
}
void dfs(int cur, int snum, int cnt)
{
if (snum == cnt)
{
int temp = n;
int mult = ;
for (int i = ; i < snum; i++)
mult = mult / gcd(mult, a[i]) * a[i]; // 防爆
if (mult == )
return;
if (temp % mult == )
res += temp / mult - ;
else
res += temp / mult;
return;
}
for (int i = cur; i < m; i++)
{
a[snum] = num[i];
dfs(i + , snum + , cnt);
}
}
int main()
{
int tm;
while (scanf("%d%d", &n, &tm) != EOF)
{
m = ;
for (int i = ; i < tm; i++)
{
int temp;
scanf("%d", &temp); // 去0
if (temp)
num[m++] = temp;
}
LL sum = ;
for (int i = ; i <= m; i++)
{
res = ;
dfs(, , i);
if (i & )
sum += res;
else
sum -= res;
}
printf("%I64d\n", sum);
}
return ;
}

HDU 1796How many integers can you find(容斥原理)的更多相关文章

  1. HDU 1796 Howmany integers can you find (容斥原理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. HDU 1796 How many integers can you find(容斥原理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  4. HDU 1796 How many integers can you find(容斥原理)

    题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...

  5. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  7. HDU 4336 Card Collector 数学期望(容斥原理)

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意简单,直接用容斥原理即可 AC代码: #include <iostream> ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. hdu1796 How many integers can you find 容斥原理

    Now you get a number N, and a M-integers set, you should find out how many integers which are small ...

随机推荐

  1. 从无到有实现登录功能以及thinkphp怎么配置数据库信息

    好开心,终于解决了.从学习android到现在写登录功能已经不是一次两次了,如今再写想着肯定是信手拈来,没有想到的是尽然折磨了我一天的时间才搞定它.唉...... 先来看几张截图,这次的登录跟以往的不 ...

  2. IO流的登录与注册

    import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;import java.io.FileR ...

  3. 最好用的Unity版本控制工具

    自从来到现在的公司,负责Unity组开发以来,尝试了各种版本控制工具.从一开始的TortoiseSVN,到后来为了追求逼格使用Git,尝试了Github客户端和SourceTree,发现都有各种不爽. ...

  4. 做JavaWeb开发不知Java集合类不如归家种地

    Java作为面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象的操作,就要对对象进行存储.但是使用数组存储对象方面具有一些弊端,而Java 集合就像一种容器,可以动态地把多个对象的引用放入容 ...

  5. HTML最新标准HTML5小结

    写在前面 HTML5出来已经很久了,然而由于本人不是专业搞前端的,只知道有这个东西,具体概念有点模糊(其实就是一系列标准规范啦):因此去年(2015.11.09),专门对HTML5做了个简单的小结,今 ...

  6. SQLite学习笔记(十二)&&虚拟机指令

    上篇文章简单讨论了虚拟机的原理,这篇文章我们详细讨论下指令,具体从几种典型的SQL语句来看看每种SQL对应的指令流,以及每个指令的含义.通过explain语句,可以看到语句对应的指令流:通过pragm ...

  7. zookeeper事务

    zookeeper事物操作,其实只是其multi操作的简单封装: public List<OpResult> multi(Iterable<Op> ops) 基本操作:new ...

  8. 8.dns服务的搭建

    一.DNS的相关配置文件 /etc/hosts    本地主机列表 /etc/nssswitch.conf     本地主机查询方式 /etc/host.conf /etc/resolv.conf   ...

  9. bug描述技巧

    进入测试行业已经两年了,我从未认真的考虑过提交一个bug需要注意哪些问题,只是主观的认为我只需要描述清楚就OK了,但是我在工作中发现有个别的开发经常跑来告诉我"这个bug你是不是描述错了&q ...

  10. virtualBox安装Centos7之后

    之前用vmware装虚拟机的时候,直接配置好网卡就可以ping通,可以用ssh登录,然后配置yum源,万事大吉. 但是virtualBox配置却有不同,需要按下面的方法配置: 选中虚拟机->设置 ...