[Python] 练习代码
- # from random import randrange
- # num = int(input('摇几次骰子: '))
- # sides=int(input('筛子有几个面: '))
- # sum=0
- # for i in range(num):
- # sum+= randrange(sides)+1
- # print('最终的点数和是 ',sum,'平均点数是:',sum/num)
- # from random import shuffle
- # from pprint import pprint
- # values=list(range(1,11))+'Jack Queen King'.split() #并入列表中
- # card_suits='diamonds clubs hearts spades'.split()
- # value_suit=['{} of {}'.format(v,c) for v in values for c in card_suits]
- # shuffle(value_suit) #打乱顺序
- # pprint(value_suit[:12])
- # while value_suit:
- # input(value_suit.pop())
- f=open('a123.txt','a')
- f.write('hello aaaaaaaaaaaaadddddddddddddddddd')
- f.close()
- f=open('a123.txt','r')
- for i in range(10):
- print(f.readline(),end='')
- f = open('a123.txt','a')
- f.write('This\nis no\nhaikou')
- f.close()
- def process(string):
- print('处理中...',string)
- # with open('a123.txt','r') as f:
- # while True:
- # line=f.readline()
- # if not line:
- # break
- # process(line)
- with open('a123.txt','r') as f:
- for line in f:
- process(line)
- with open('a123.txt','r') as f:
- for line in f.readlines():
- process(line)
- def triangles():
- row = [1]
- while True:
- yield(row)
- row = [1] + [row[k] + row[k + 1] for k in range(len(row) - 1)] + [1]
- n = 0
- results = []
- for t in triangles():
- print(t)
- results.append(t)
- n = n + 1
- if n == 10:
- break
- if results == [
- [1],
- [1, 1],
- [1, 2, 1],
- [1, 3, 3, 1],
- [1, 4, 6, 4, 1],
- [1, 5, 10, 10, 5, 1],
- [1, 6, 15, 20, 15, 6, 1],
- [1, 7, 21, 35, 35, 21, 7, 1],
- [1, 8, 28, 56, 70, 56, 28, 8, 1],
- [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
- ]:
- print('测试通过!')
- else:
- print('测试失败!')
- ' a test module '
- __author__ = 'Michael Liao'
- import sys
- def test():
- args = sys.argv
- if len(args)==1:
- print('Hello, world!')
- elif len(args)==2:
- print('Hello, %s!' % args[1])
- else:
- print('Too many arguments!')
- if __name__=='__main__':
- test()
- class Student(object):
- pass
- bart = Student()
- bart.name='jojo'
- bart.name
- class Student(object):
- def __init__(self, name, score):
- self.name = name
- self.score = score
- def get_grade(self):
- if self.score >= 90:
- return 'A'
- elif self.score >= 60:
- return 'B'
- else:
- return 'C'
- gg=Student('aaa',100)
- gg.get_grade()
- for c in "python":
- if c=='t':
- continue
- print(c,end=' ')
- s='python'
- while s !='':
- for c in s:
- print(c,end='')
- s=s[:-1]
- import random
- from pprint import pprint
- pprint(random.seed(10))
- random.random()
- from random import random
- from time import perf_counter
- DARTS=1000*10000
- hits=0.0
- start=perf_counter()
- for i in range(1,DARTS+1):
- x,y=random(),random()
- dist=pow(x**2+y**2,0.5)
- if dist <= 1:
- hits=hits+1
- pi = 4*(hits/DARTS)
- print("圆周率值是:{}".format(pi))
- print('运行时间是:{:.20f}s'.format(perf_counter()-start))
- import requests
- r=requests.get('http://www.shipxy.com/')
- r.status_code
- r.text
- for i in range(1,5):
- for j in range(1,5):
- for k in range(1,5):
- if (i!=j)and(j!=k)and(k!=i):
- print(i,j,k)
- profit = int(input('输入发放的利润值(万元): '))
- if 0 <= profit <10:
- print('提成为:',profit*0.1,'万元')
- if 10 <= profit < 20:
- print('提成为:',(profit-10)*0.075+10*0.1,'万元')
- if 20 <= profit < 40:
- print('提成为:',(profit-20)*0.05+10*0.075+10*0.1,'万元')
- if 40 <= profit < 60:
- print('提成为:',(profit-40)*0.03+20*0.05+10*0.075+10*0.1,'万元')
- if 60 <= profit < 100:
- print('提成为:',(profit-60)*0.015+20*0.03+20*0.05+10*0.075+10*0.1,'万元')
- if profit >= 100:
- print('提成为:',(profit-100)*0.01+40*0.015+20*0.03+20*0.05+10*0.075+10*0.1,'万元')
- profit = int(input('输入企业的利润值(万元): '))
- gap = [100,60,40,20,10,0]
- ratio =[0.01,0.015,0.03,0.05,0.075,0.1]
- bonus=0
- for idx in range(0,6):
- if profit >= gap[idx]:
- bonus += (profit-gap[idx])*ratio[idx]
- profit=gap[idx]
- print('提成为:',bonus,'万元')
- profit = int(input('输入企业的利润值(万元): '))
- def get_bonus(profit):
- bonus = 0
- if 0 <= profit <= 10:
- bonus = 0.1*profit
- elif (profit > 10) and (profit <= 20):
- bonus = (profit-10)*0.075 + get_bonus(10)
- elif (profit > 20) and (profit <= 40):
- bonus = (profit-20)*0.05 + get_bonus(20)
- elif (profit > 40) and (profit <= 60):
- bonus = (profit-40)*0.03 + get_bonus(40)
- elif (profit > 60) and (profit <= 100):
- bonus = (profit-60)*0.015 + get_bonus(60)
- elif (profit >100):
- bonus = (profit-100)*0.01 + get_bonus(100)
- else:
- print("利润输入值不能为负")
- return bonus
- if __name__ == '__main__':
- print('提成为:',get_bonus(profit),'万元')
- '''
- 分析:
- x + 100 = m^2
- x + 100 + 168 = n^2
- n^2 - m^2 = 168
- (n + m) * (n - m) = 168
- n > m >= 0
- n - m 最小值为 1
- n + m 最大为 168
- n 最大值为 168
- m 最大值为 167
- '''
- def _test():
- for m in range(0, 168):
- for n in range(m + 1, 169):
- #print('n=%s,m=%s' % (n, m))
- if (n + m) * (n - m) == 168:
- print("该数为:" + str(n * n - 168 - 100))
- print("该数为:" + str(m * m - 100))
- print('n为%s,m为%s' % (n, m))
- if __name__ == '__main__':
- _test()
- def test1():
- for n in range(0,168):
- for m in range(n,169):
- if (m+n)*(m-n) == 168:
- print("这个整数是: ",str(n*n-100))
- if __name__ =='__main__':
- test1()
- import pandas as pd
- df = pd.read_csv(r'c:\Users\clemente\Desktop\all\train.csv',index_col='Id')
- df.head()
- for i in range(0,7):
- for j in range(0,7):
- for k in range(0,7):
- for g in range(0,7):
- for h in range(0,7):
- while (i!=j) and(i!=g) and(g!=h)and(h!=k)and(k!=i):
- if (i+j+k+g+h)==15:
- print (i,j,k,g,h)
- import random
- def gen5num():
- alldigit=[0,1,2,3,4,5,6,0]
- first=random.randint(0,6) #randint包含两端,0和6
- alldigit.remove(first)
- second=random.choice(alldigit)
- alldigit.remove(second)
- third=random.choice(alldigit)
- alldigit.remove(third)
- forth=random.choice(alldigit)
- alldigit.remove(forth)
- fiveth=random.choice(alldigit)
- alldigit.remove(fiveth)
- if (first+second+third+forth+fiveth)==15:
- return first,second,third,forth,fiveth
- if __name__=='__main__':
- for i in range(100):
- print(gen5num())
- #!/usr/bin/env python3
- #coding=utf-8
- from itertools import permutations
- t = 0
- for i in permutations('',5):
- print(''.join(i))
- t += 1
- print("不重复的数量有:%s"%t)
- def sum_1():
- """
- aaaddd
- """
- for i in '':
- p += int(i)
- print(sum(p))
- sum_1()
- np.*load*?
- #题目:数组中找出两个元素之和 等于给定的整数
- # 思路:
- # 1、将数组元素排序;
- # 2、array[i]与a[j](j的取值:i+1到len_array-1) 相加;
- # 3、如两两相加<整数继续,如=整数则输出元素值;
- # 4、如>则直接退出,i+1 开始下一轮相加比较
- def addData(array, sumdata):
- """
- aaaadddd
- """
- temp_array = array
- temp_sumdata = sumdata
- print ("sumdata: {}".format(temp_sumdata))
- sorted(temp_array)
- len_temp_array = len(temp_array)
- # 计数符合条件的组数
- num = 0
- for i in range(0, len_temp_array-1):
- for j in range(i+1, len_temp_array):
- for k in range(j+1,len_temp_array):
- if temp_array[i] + temp_array[j] + temp_array[k] < temp_sumdata:
- continue
- elif temp_array[i] + temp_array[j] + temp_array[k] == temp_sumdata:
- num += 1
- print("Group {} :".format(num))
- print("下标:{}, 元素值: {}".format(i, temp_array[i]))
- else:
- break
- if __name__=="__main__":
- test_array = [0,1,2,3,4,5,6,0]
- test_sumdata = 4
- addData(test_array, test_sumdata)
- #题目:数组中找出两个元素之和 等于给定的整数
- # 思路:
- # 1、将数组元素排序;
- # 2、array[i]与a[j](j的取值:i+1到len_array-1) 相加;
- # 3、如两两相加<整数继续,如=整数则输出元素值;
- # 4、如>则直接退出,i+1 开始下一轮相加比较
- import numpy as np
- names=np.array(['Bob','Joe','Will','Bob','Will','Joe','Joe'])
- data=np.random.randn(7,4)
- names
- data
- names == 'Bob'
- data[names=='Bob']
- arr[[4,3,0,6]]
- import matplotlib.pyplot as plt
- points = np.arange(-5,5,0.01)
- xs,ys=np.meshgrid(points,points)
- z=np.sqrt(xs**2+ys**2)
- plt.imshow(z,cmap=plt.cm.gray)
- plt.colorbar()
- plt.title("图像 $\sqrt{x^2+y^2}$")
- import pandas as pd
- obj=pd.Series(range(3),index=["a","b","c"])
- index=obj.index
- index[1]='d'
- import numpy as np
- import pandas as pd
- data=pd.DataFrame(np.arange(16).reshape(4,4),index=[1,2,3,4],columns=["one","two","three","forth"])
- data<3
- df1=pd.DataFrame({"A":[1,2]})
- df1
- obj=pd.Series(["a","a","b","c"]*4)
- obj
- obj.describe()
- import json
- result = json.loads(obj)
- result
- import pandas as pd
- ages=[12,34,23,45,67,30,20,55,98,30,43]
- bins=[1,20,30,40,50,100]
- cats=pd.cut(ages,bins)
- cats
- cats.codes
- pd.value_counts(cats)
- DataF=pd.DataFrame(np.arange(5*4).reshape((5,4)))
- DataF
- sample_1=np.random.permutation(5*4)
- sample_1.reshape(5,4)
- df=pd.DataFrame({'key':['b','b','a','c','a','b'],'data1':range(6)})
- df
- df[["data1"]]
- import pandas as pd
- left=pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','two','one'],'lval':[1,2,3]})
- right=pd.DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})
- pd.merge(left,right,on=['key1'])
- import matplotlib.pyplot as plt
- import numpy as np
- data=np.arange(10000)
- plt.plot(data)
- fig=plt.figure()
- ax1=fig.add_subplot(2,2,1)
- ax2=fig.add_subplot(2,2,2)
- ax3=fig.add_subplot(2,2,3)
- ax1.hist(np.random.randn(100),bins=20,color='k',alpha=0.5)
- ax2.scatter(np.arange(30),np.arange(30)+3*np.random.randn(30))
- ax3.plot(np.random.randn(50).cumsum(),drawstyle='steps-post')
- fig=plt.figure()
- ax=fig.add_subplot(1,1,1)
- rect=plt.Rectangle((0.5,0.8),0.4,0.4,color='g',alpha=0.4)
- ax.add_patch(rect)
- plt.savefig("真的.svg",bbox_inches='tight')
- s=pd.Series(np.random.randn(10).cumsum())
- s.plot()
- s=pd.Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
- s.plot()
- df=pd.DataFrame(np.random.randn(10,4).cumsum(0),columns=['A','B','C','D'],index=np.arange(0,100,10))
- df.plot()
- fig,axes=plt.subplots(2,1)
- data=pd.Series(np.random.rand(16),index=list("abcdefghijklmnop"))
- data.plot.bar(ax=axes[0],color='k',alpha=0.7)
- data.plot.barh(ax=axes[1],color='g',alpha=0.7)
- plt.show()
- df=pd.DataFrame(np.random.rand(6,4),index=['one','two','three','four','five','six'],columns=pd.Index(['A','B','C','D'],name='Genus'))
- df
- df.plot.bar()
- df.plot.barh(stacked=True,alpha=0.5)
- tips=pd.read_csv('tips.csv')
- party_counts = pd.crosstab(tips['day'],tips['size'])
- party_counts
- party_counts=party_counts.loc[:,2:5]
- party_counts
- party_counts.sum(1)
- party_pcts= party_counts.div(party_counts.sum(1),axis=0)
- party_pcts.plot.bar()
- import seaborn as sns
- tips=pd.read_csv('tips.csv')
- tips['tip_pct']=tips['tip']/(tips['total_bill']-tips['tip'])
- tips.head()
- sns.barplot(x='tip_pct',y='day',data=tips,orient='h')
- sns.barplot(x='tip_pct',y='day',hue='time',data=tips,orient='h')
- sns.set(style='whitegrid')
- tips['tip_pct'].plot.hist(bins=50)
- tips['total_bill'].plot.hist(bins=50)
- tips['tip_pct'].plot.density()
- tips['total_bill'].plot.density()
- comp1=np.random.normal(0,1,size=200)
- comp2=np.random.normal(10,2,size=200)
- values=pd.Series(np.concatenate([comp1,comp2]))
- sns.distplot(values,bins=101,color='k')
- macro=pd.read_csv('macrodata.csv')
- data=macro[['cpi','m1','tbilrate','unemp']]
- trans_data=np.log(data).diff().dropna()
- trans_data.head()
- trans_data[-5:]
- sns.regplot("m1","unemp",data=trans_data)
- plt.title('Changes in log {} versus log {}'.format('m1','unemp'))
- sns.set(style="ticks", color_codes=True)
- sns.pairplot(trans_data,diag_kind='kde',kind='reg')
- sns.pairplot(trans_data,diag_kind='hist',kind='reg')
- sns.factorplot(x='day',y='tip_pct',row='time',hue='smoker',kind='box',data=tips[tips.tip_pct<0.5])
- tips.describe()
- import matplotlib.pyplot as plt
- import pandas as pd
- import numpy as np
- df=pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})
- df
- group_1=df['data1'].groupby(df['key1'])
- group_1.describe()
- group_2=df['data1'].groupby([df['key1'],df['key2']]).mean()
- group_2
- states=np.array(['Ohio','California','California','Ohio','Ohio'])
- years=np.array([2005,2005,2006,2005,2006])
- df['data1'].groupby([states,years]).mean()
- dict(list(df.groupby('key1')))
- try:
- year=input("输入年份:")
- month=input("输入月份: ")
- day=input("输入日期号: ")
- finally:
- print("正在计算")
- months2days=[0,31,59,90,120,151,181,212,243,273,304,334]
- # 闰年
- if int(year) % 4 ==0:
- for i in range(2,12,1):
- months2days[i] +=1
- month_index=[]
- for j in range(12):
- month_index.append(i+1)
- dict_md=dict(zip(month_index,months2days))
- whichday=dict_md[int(month)]+int(day)
- print('结果是: 第{}天'.format(whichday))
- def unsortedSearch(list, i, u):
- found = False
- pos = 0
- pos2 = 0
- while pos < len(list) and not found:
- if int(list[pos]) < int(u) :
- if int(list[pos2]) > int(i):
- found = True
- pos2 = pos2 + 1
- pos = pos + 1
- return found
- unsortedList = ['', '', '', '', '', '', '', '', '', '']
- num1 = ''
- num2 = ''
- isItThere = unsortedSearch(unsortedList, num1, num2)
- if isItThere:
- print ("There is a number between those values")
- else:
- print ("There isn't a number between those values")
- def get_nums():
- nums=[]
- n=int(input("一共有几个整数?"))
- for i in range(n):
- x=int(input('请按次随机输入第{}个整数(剩余{}次输入):'.format(i+1,n-i)))
- nums.append(x)
- return nums
- if __name__=='__main__':
- list_nums=get_nums()
- def BubbleSort(nums): #冒泡法
- print('初始整数集合为:{}'.format(nums))
- for i in range(len(nums)-1):
- for j in range(len(nums)-i-1):
- if nums[j]>nums[j+1]:
- nums[j],nums[j+1]=nums[j+1],nums[j] #调换位置,相互赋值
- print("第{}次迭代排序结果:{}".format((len(nums)-j-1),nums))
- return nums
- if __name__=='__main__':
- print('经过冒泡法排序最终得到:{}'.format(BubbleSort(list_nums)))
- def get_nums():
- nums=[]
- n=int(input("一共有几个整数?"))
- for i in range(n):
- x=int(input('请按次随机输入第{}个整数(剩余{}次输入):'.format(i+1,n-i)))
- nums.append(x)
- return nums
- if __name__=='__main__':
- myList=get_nums()
- def selectedSort(myList):
- #获取list的长度
- length = len(myList)
- #一共进行多少轮比较
- for i in range(0,length-1):
- #默认设置最小值得index为当前值
- smallest = i
- #用当先最小index的值分别与后面的值进行比较,以便获取最小index
- for j in range(i+1,length):
- #如果找到比当前值小的index,则进行两值交换
- if myList[j]<myList[smallest]:
- tmp = myList[j]
- myList[j] = myList[smallest]
- myList[smallest]=tmp
- #打印每一轮比较好的列表
- print("Round ",i,": ",myList) #根据第一个i循环进行打印,而不是选j循环
- print("选择排序法:迭代过程 ")
- selectedSort(myList)
- def merge_sort(LIST):
- start = []
- end = []
- while len(LIST) > 1:
- a = min(LIST)
- b = max(LIST)
- start.append(a)
- end.append(b)
- LIST.remove(a)
- LIST.remove(b)
- if LIST:
- start.append(LIST[0])
- end.reverse()
- return (start + end)
- if __name__=='__main__':
- nums=[]
- n=int(input('一共几位数: '))
- for i in range(n):
- x=int(input("请依次输入整数:"))
- nums.append(x)
- print(merge_sort(nums))
- # =============================================================================
- #10.1.2
- # =============================================================================
- import pandas as pd
- df=pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})
- df
- df.groupby(['key1','key2'])['data1'].mean()
- people=pd.DataFrame(np.random.randn(5,5),columns=['a','b','c','d','e'],index=['joe','steve','wes','jim','travis'])
- people
- mapping={'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'}
- by_column=people.groupby(mapping,axis=1)
- by_column.mean()
- map_series=pd.Series(mapping)
- people.groupby(len).sum()
- # =============================================================================
- # 分组加权
- # =============================================================================
- import pandas as pd
- df=pd.DataFrame({'目录':['a','a','a','a','b','b','b','b'],'data':np.random.randn(8),'weights':np.random.randn(8)})
- df
- grouped=df.groupby('目录')
- get_weighpoint=lambda x: np.average(x['data'],weights=x['weights'])
- grouped.apply(get_weighpoint)
- # =============================================================================
- #
- # =============================================================================
- spx=pd.read_csv('stock_px_2.csv',index_col=0,parse_dates=True)
- spx
- spx.info()
- from datetime import datetime
- datestrs=['7/6/2011','8/6/2011']
- [datetime.strptime(x,'%m/%d/%Y')for x in datestrs]
- dates=pd.date_range('1/1/2018',periods=1000)
- dates
- long_df=pd.DataFrame(np.random.randn(1000,4),index=dates,columns=['Colorado','Texas','New York','Ohio'])
- long_df
- pd.date_range('2018-10-1',periods=30,freq='1h')
- # =============================================================================
- #
- # =============================================================================
- close_px_all=pd.read_csv("stock_px_2.csv",parse_dates=True,index_col=0)
- close_px=close_px_all[['AAPL','MSFT','XOM']]
- close_px=close_px.resample("B").ffill()
- close_px.AAPL.plot()
- close_px.AAPL.rolling(250).mean().plot()
- import pandas as pd
- import numpy as np
- values=pd.Series(['apple','orange','apple','apple']*2)
- values
- pd.unique(values)
- pd.value_counts(values)
- import pandas as pd
- import matplotlib.pyplot as plt
- from sklearn.linear_model import RANSACRegressor, LinearRegression, TheilSenRegressor
- from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, median_absolute_error, r2_score
- from sklearn.svm import SVR
- from sklearn.linear_model import Ridge,Lasso,ElasticNet,BayesianRidge
- from sklearn.ensemble import GradientBoostingRegressor
- from sklearn.cross_validation import train_test_split
- data = pd.read_csv('../cement_data.csv')
- # 查看数据记录的长度,共1030行
- print(len(data))
- # 查看前五行数据
- data.head()
- import pandas
- titanic=pandas.read_csv('train.csv')
- titanic.head()
- titanic.describe()
- titanic['Age']=titanic['Age'].fillna(titanic['Age'].median())
- print(titanic['Sex'].unique()) #找Sex特征里的分类字符名,只有两种可能性
- titanic.loc[titanic['Sex']=='female','Sex']=1#把分类字符名转换成整数1,0形式,进行标记
- titanic.loc[titanic['Sex']=='male','Sex']=0
- #对embarked 登船地 进行填充(按最多标记)
- print(titanic['Embarked'].unique())
- titanic['Embarked']=titanic['Embarked'].fillna('S')
- titanic.loc[titanic['Embarked']=='S']=0
- titanic.loc[titanic['Embarked']=='C']=1
- titanic.loc[titanic['Embarked']=='Q']=2
- # =============================================================================
- # 引进模型,线性回归
- # =============================================================================
- from sklearn.linear_model import LinearRegression
- from sklearn.cross_validation import KFold
- #cross_validation 交叉验证,进行调参,训练数据集分成三份,三份做交叉验证
- predictors=['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked'] #需要输入并做预测的特征列
- alg=LinearRegression()
- kf=KFold(titanic.shape[0],n_folds=3,random_state=1) #shape[0]一共有多少行,random_state=1 随机种子开启,n_fold=3把训练集分为三份
- predictions=[]
- for train,test in kf:
- train_predictors=titanic[predictors].iloc[train,:] #交叉验证中,除开训练的部分
- train_target=titanic['Survived'].iloc[train]#获取目标训练集
- alg.fit(train_predictors,train_target) #依据模型,训练
- test_predictions=alg.predict(titanic[predictors].iloc[test,:]) #测试集
- predictions.append(test_predictions)
- import numpy as np
- predictions=np.concatenate(predictions,axis=0)
- # 整理输出值,按照可能性分类到0,1
- predictions[predictions>=0.5]=0
- predictions[predictions<0.5]=1
- accuracy=sum(predictions[predictions==titanic['Survived']])/len(predictions)
- print(accuracy)
- # =============================================================================
- # 逻辑回归
- # =============================================================================
- from sklearn import cross_validation
- from sklearn.linear_model import LogisticRegression
- alg=LogisticRegression(random_state=1)
- scores=cross_validation.cross_val_score(alg,titanic[predictors],titanic['Survived'],cv=3)
- print(scores.mean())
- # =============================================================================
- # 随机森林
- # =============================================================================
- from sklearn import cross_validation
- from sklearn.ensemble import RandomForestClassifier
- predictors=['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']
- alg=RandomForestClassifier(random_state=1,n_estimators=10,min_samples_split=2,min_samples_leaf=1)
- kf=cross_validation.KFold(titanic.shape[0],n_folds=3,random_state=1)
- scores=scores=cross_validation.cross_val_score(alg,titanic[predictors],titanic['Survived'],cv=kf)
- print(scores.mean())
[Python] 练习代码的更多相关文章
- Python一行代码
1:Python一行代码画出爱心 print]+(y*-)**-(x**(y*<= ,)]),-,-)]) 2:终端路径切换到某文件夹下,键入: python -m SimpleHTTPServ ...
- python爬虫代码
原创python爬虫代码 主要用到urllib2.BeautifulSoup模块 #encoding=utf-8 import re import requests import urllib2 im ...
- Python小代码_2_格式化输出
Python小代码_2_格式化输出 name = input("name:") age = input("age:") job = input("jo ...
- Python小代码_1_九九乘法表
Python小代码_1_九九乘法表 max_num = 9 row = 1 while row <= max_num: col = 1 while col <= row: print(st ...
- Python IDLE 代码高亮主题
Python IDLE 代码高亮主题 使用方法: 打开C盘我的 C:\Documents and Settings\你的用户名.idlerc文件夹 里面会有一个 config-highlight.cf ...
- 代码块: 以冒号作为开始,用缩进来划分作用域,这个整体叫做代码块,python的代码块可以提升整体的整齐度,提高开发效率
# ### 代码块: 以冒号作为开始,用缩进来划分作用域,这个整体叫做代码块 if 5 == 5: print(1) print(2) if True: print(3) print(4) if Fa ...
- uiautomatorviewer 优化定位符生成,支持生成Java,Python自动化代码
项目介绍 二次开发 uiautomatorviewer 优化定位符生成,支持生成Java,Python自动化代码,修复自带工具画面有动态加载时截图失败问题,优化自带工具截图速度 ,实现类似录制脚本功能 ...
- Python实现代码统计工具——终极加速篇
Python实现代码统计工具--终极加速篇 声明 本文对于先前系列文章中实现的C/Python代码统计工具(CPLineCounter),通过C扩展接口重写核心算法加以优化,并与网上常见的统计工具做对 ...
- Python静态代码检查工具Flake8
简介 Flake8 是由Python官方发布的一款辅助检测Python代码是否规范的工具,相对于目前热度比较高的Pylint来说,Flake8检查规则灵活,支持集成额外插件,扩展性强.Flake8是对 ...
- 【Python】《大话设计模式》Python版代码实现
<大话设计模式>Python版代码实现 上一周把<大话设计模式>看完了,对面向对象技术有了新的理解,对于一个在C下写代码比较多.偶尔会用到一些脚本语言写脚本的人来说,很是开阔眼 ...
随机推荐
- 面试官:"谈谈分库分表吧?"
原文链接:面试官:"谈谈分库分表吧?" 面试官:“有并发的经验没?” 应聘者:“有一点.” 面试官:“那你们为了处理并发,做了哪些优化?” 应聘者:“前后端分离啊,限流啊 ...
- javascript 点击触发复制功能
摘要: js调用复制功能使用: document.execCommand("copy", false); document.execCommand()方法功能很强大,了解更多请戳: ...
- 1,JavaScript前世今生
JavaScript历史大概在1992年,一家称作Nombas的公司开始开发一种叫做C–(C-minus-minus,简称Cmm)的嵌入式脚本语言. Cmm背后的理念很简单:一个足够强大可以替代宏操作 ...
- margin:0 auto是什么意思
一.margin设置对象外边距 二.margin后面如果只有两个参数的话,第一个表示top和bottom,第二个表示left和right 因为0 auto
- K8S 通过 yaml 文件创建资源
创建 pod cd ~ vi pod-demo.yaml # 内容如下 apiVersion: v1 kind: Pod metadata: name: pod-demo namespace: def ...
- C#基础(203)实例方法和重载方法总结,构造方法与实例方法总结,this关键字
c#方法的重载:分为实例方法重载和静态方法重载俩种 1.实例方法重载的调用特点 首先写三个Add方法和三个Sub方法 public int Add(int a,int b) { return a + ...
- Ubuntu、deepin 支持 yum
1,首先检测是否安装了build-essential程序包 sudo apt-get install build-essential 2,安装 yum sudo apt-get yum 3,检测是否安 ...
- Android getprop 读取的属性哪里来的?
Android getprop 和 setprop 可以对系统属性进行读取和设置. 通过串口执行以下 geyprop 打印出来的属性让你一目了然. 属性出来了,但是在哪里设置的呢,这里有两个 ...
- Django 登录验证-自动重定向到登录页
Web项目有些场景需要做用户登录验证,以便访问不同页面. 方法一:login_required装饰器 适用于函数视图. from django.contrib.auth.decorators impo ...
- Android 官方DEMO - ActionBarCompat-Basic
ActionBarCompat-Basic Demo下载地址:https://github.com/googlesamples/android-ActionBarCompat-Basic/#readm ...