原文链接:奇异值分解(SVD)的计算方法

奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解。

首先,对于一个m*n的矩阵,如果存在正交矩阵U(m*m阶)和V(n*n阶),使得(1)式成立:
\[A=U \Sigma V^T \tag{1}\]

则将式(1)的过程称为奇异值分解,其中\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),且
\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\),U和V分别称为A的左奇异向量矩阵和右奇异向量矩阵。 下面用一个具体的例子来说明如何得到上述的分解。

假设我们有一个矩阵\(A=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\)

第一步计算U

计算矩阵\(AA^T=\begin{bmatrix} 2&2&0\\2&2&0\\0&0&0\end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[0,0,1]^T\),可以得到
\[U=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix}\]

第二步计算V

计算矩阵\(A^TA=\begin{bmatrix} 2&2 \\ 2&2 \end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T\),可以得到
\[V=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\]

第三步计算\(\Sigma^{m×n}\)

\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),其中\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\)是将第一或第二步求出的非零特征值从大到小排列后开根号的值,这里\(\Sigma=\begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix}\)

最终,我们可以得到A的奇异值分解
\[A=U \Sigma V^T= \begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix} \begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix} {\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}}^T=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\]

矩阵的特征值分解和奇异值分解有什么区别?

首先,特征值只能作用在一个mm的正方矩阵上,而奇异值分解则可以作用在一个mn的长方矩阵上。其次,奇异值分解同时包含了旋转、缩放和投影三种作用,(1)式中,U和V都起到了对A旋转的作用,而Σ起到了对A缩放的作用。特征值分解只有缩放的效果。

MARSGGBO♥原创







2018-12-21

【转载】奇异值分解(SVD)计算过程示例的更多相关文章

  1. 降维之奇异值分解(SVD)

    看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地 ...

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  4. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  6. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  7. CFD计算过程发散诸多原因分析【转载】

    转载自: http://blog.sina.com.cn/s/blog_5fdfa7e601010rkx.html 今天探讨引起CFD计算过程中发散的一些原因.cfd计算是将描述物理问题的偏微分方程转 ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

随机推荐

  1. CSS文档统筹

    一.CSS文档统筹 1.整站里相同的CSS样式提取到一个样式表里,各个页面调用相同的样式文件即可: 2.网站较大的情况下一般会把网站的头部,尾部单独分离出来,包括样式文件: 1)根据页面类型分离文件 ...

  2. BZOJ2157 边转点 树链剖分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2157 现在就是后悔,非常后悔 本来想随便拿个树剖热身,不料开了个毒瘤题. 题意:动态维护一棵树上的 ...

  3. bzoj2819 DFS序 + LCA + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2819 题意:树上单点修改及区间异或和查询. 思维难度不高,但是题比较硬核. 整体思路是维护每一个结 ...

  4. redis做session会话共享

    项目中需要两个不同的web项目互相访问,用户对象为同一个User.决定用Redis来存储用户对象信息...ok,环境搭建开始: 1.pom.xml引入Redis依赖的jar: <!-- jedi ...

  5. layui(九)——flow组件常见用法总结

    该模块包含 信息流加载 和  图片懒加载  两大核心支持,无论是对服务端.还是前端体验,都有非常大的性能帮助.下边分别给出了这两种技术的使用方法 一.信息流加载 信息流加载的核心方法时  flow.l ...

  6. HDU 6432(不连续环排列 ~)

    题意是说在长度为 n 的环排列中,按照一定的方向(顺时针或逆时针),后一个数不能仅比前一个数大 1 , n 的下一个数不能是 1 ,问这种长度为 n 且本质不同(本质不同指环上数字的相对位置不同,如 ...

  7. solr简介与安装

    solr简介: Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展,并对索引 ...

  8. 解决浏览器跨域限制方案之JSONP

    一.什么是JSONP JSONP即:JSON with Padding,是一种解决因浏览器跨域限制不允许访问跨域资源的方法. JSONP是一个非官方的协议,它允许在服务器端返回javascript标签 ...

  9. Js点击按钮下载文件到本地(兼容多浏览器)

    实现点击 用纯 js(非jquery)  下载文件到本地 自己尝试,加网上找了好久未果,如: window.open(url)   location.href=url   form表单提交   ifr ...

  10. Jquery weui显示右箭头

    <div class='weui_cells weui_cells_access'> <div class='weui_cell'> <div class='weui_c ...