原文链接:奇异值分解(SVD)的计算方法

奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解。

首先,对于一个m*n的矩阵,如果存在正交矩阵U(m*m阶)和V(n*n阶),使得(1)式成立:
\[A=U \Sigma V^T \tag{1}\]

则将式(1)的过程称为奇异值分解,其中\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),且
\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\),U和V分别称为A的左奇异向量矩阵和右奇异向量矩阵。 下面用一个具体的例子来说明如何得到上述的分解。

假设我们有一个矩阵\(A=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\)

第一步计算U

计算矩阵\(AA^T=\begin{bmatrix} 2&2&0\\2&2&0\\0&0&0\end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[0,0,1]^T\),可以得到
\[U=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix}\]

第二步计算V

计算矩阵\(A^TA=\begin{bmatrix} 2&2 \\ 2&2 \end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T\),可以得到
\[V=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\]

第三步计算\(\Sigma^{m×n}\)

\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),其中\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\)是将第一或第二步求出的非零特征值从大到小排列后开根号的值,这里\(\Sigma=\begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix}\)

最终,我们可以得到A的奇异值分解
\[A=U \Sigma V^T= \begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix} \begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix} {\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}}^T=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\]

矩阵的特征值分解和奇异值分解有什么区别?

首先,特征值只能作用在一个mm的正方矩阵上,而奇异值分解则可以作用在一个mn的长方矩阵上。其次,奇异值分解同时包含了旋转、缩放和投影三种作用,(1)式中,U和V都起到了对A旋转的作用,而Σ起到了对A缩放的作用。特征值分解只有缩放的效果。

MARSGGBO♥原创







2018-12-21

【转载】奇异值分解(SVD)计算过程示例的更多相关文章

  1. 降维之奇异值分解(SVD)

    看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地 ...

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  4. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  6. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  7. CFD计算过程发散诸多原因分析【转载】

    转载自: http://blog.sina.com.cn/s/blog_5fdfa7e601010rkx.html 今天探讨引起CFD计算过程中发散的一些原因.cfd计算是将描述物理问题的偏微分方程转 ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

随机推荐

  1. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

  2. Scrapy框架的执行流程解析

    这里主要介绍七个大类Command->CrawlerProcess->Crawler->ExecutionEngine->sceduler另外还有两个类:Request和Htt ...

  3. flask blueprint

    在使用flask进行一个项目编写的时候,可能会有许多个模块,如一个网站的前台(home)和后台(admin)模块,如果把这两个模块都放在一个views.py文件之中,那么最后views.py文件必然臃 ...

  4. 运维监控-基于yum的方式部署Zabbix Server 4.0 版本

    运维监控-基于yum的方式部署Zabbix Server 4.0 版本 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.如何选择zabbix版本 1>.打开zabbix官方 ...

  5. 本地服务器上挂载A目录到B目录

    原因: 由于某个分区满了,切磁盘无法扩大分区空间,但是项目依赖该分区,需要继续像该分区存储文件,此时其他分区还有很大的空间,使用挂载的方式,在有空间的分区创建新目录,将新目录挂载到源目录下即可. 执行 ...

  6. Nlog日志组件简介

    NLog简介 NLog是一个简单灵活的.NET日志记录类库,NLog的API非常类似于log4net,配置方式非常简单.支持多种形式输出日志:文本文件.系统日志.数据库.控制台.邮箱等 1.NLog简 ...

  7. 细说java系统之动态代理

    代理模式 在深入学习动态代理之前,需要先掌握代理模式.只有深刻理解了代理模式的应用,才能充分理解Java动态代理带来的便利. 在生活中存在许多使用"代理模式"的场景,比如:村里的张 ...

  8. 【转载】C# 泛型详解

    https://www.cnblogs.com/yueyue184/p/5032156.html

  9. GBK 字符集

    什么是 GBK ? 中文名 汉字编码字符集 外文名 Chinese Internal Code Specification 全    称 <汉字内码扩展规范> GBK编码,是对GB2312 ...

  10. mkdocs 生成帮助文档

    简介 MkDocs 可以同时编译多个markdown文件,形成书籍一样的文件.有多种主题供你选择,很适合项目使用. MkDocs 是快速,简单和华丽的静态网站生成器,可以构建项目文档.文档源文件在 M ...