原文链接:奇异值分解(SVD)的计算方法

奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解。

首先,对于一个m*n的矩阵,如果存在正交矩阵U(m*m阶)和V(n*n阶),使得(1)式成立:
\[A=U \Sigma V^T \tag{1}\]

则将式(1)的过程称为奇异值分解,其中\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),且
\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\),U和V分别称为A的左奇异向量矩阵和右奇异向量矩阵。 下面用一个具体的例子来说明如何得到上述的分解。

假设我们有一个矩阵\(A=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\)

第一步计算U

计算矩阵\(AA^T=\begin{bmatrix} 2&2&0\\2&2&0\\0&0&0\end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0]^T,[0,0,1]^T\),可以得到
\[U=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix}\]

第二步计算V

计算矩阵\(A^TA=\begin{bmatrix} 2&2 \\ 2&2 \end{bmatrix}\)

对其进行特征分解,分别得到特征值4,0和对应的特征向量\([\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T,[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^T\),可以得到
\[V=\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\]

第三步计算\(\Sigma^{m×n}\)

\(\Sigma_{mn}=\begin{bmatrix}\Sigma_1 & 0 \\ 0 & 0\end{bmatrix}\),其中\(\Sigma_1=diag(\sigma_1,\sigma_1,\dots,\sigma_r)\)是将第一或第二步求出的非零特征值从大到小排列后开根号的值,这里\(\Sigma=\begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix}\)

最终,我们可以得到A的奇异值分解
\[A=U \Sigma V^T= \begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ 0&0&1 \end{bmatrix} \begin{bmatrix} 2&0 \\ 0&0 \\ 0&0 \end{bmatrix} {\begin{bmatrix} \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}}^T=\begin{bmatrix} 1&1\\1&1\\0&0\end{bmatrix}\]

矩阵的特征值分解和奇异值分解有什么区别?

首先,特征值只能作用在一个mm的正方矩阵上,而奇异值分解则可以作用在一个mn的长方矩阵上。其次,奇异值分解同时包含了旋转、缩放和投影三种作用,(1)式中,U和V都起到了对A旋转的作用,而Σ起到了对A缩放的作用。特征值分解只有缩放的效果。

MARSGGBO♥原创







2018-12-21

【转载】奇异值分解(SVD)计算过程示例的更多相关文章

  1. 降维之奇异值分解(SVD)

    看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地 ...

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  4. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  6. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  7. CFD计算过程发散诸多原因分析【转载】

    转载自: http://blog.sina.com.cn/s/blog_5fdfa7e601010rkx.html 今天探讨引起CFD计算过程中发散的一些原因.cfd计算是将描述物理问题的偏微分方程转 ...

  8. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  9. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

随机推荐

  1. noi.openjudge 1.13.15

    http://noi.openjudge.cn/ch0113/15/ 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一个长度为N的整数序列 (不多于128个整数),每个整数的范 ...

  2. Mysq基础l数据库管理、表管理、增删改数据整理

    一.       数据库管理: 创建数据库: create database(自定义) 查询所有数据库: show databases;(查询所有数据库) show create database ( ...

  3. ubuntu14.04安装tun/tap网络设备

    14.04的系统默认是没有tun设备的,所以需要通过在内核中编译时勾选此设备.接下来分步来介绍如何安装tun设备. 一.更新ubuntu桌面版源: sudo gedit /etc/apt/source ...

  4. Spring_AOP 实现原理与 CGLIB 应用

    转自:https://www.ibm.com/developerworks/cn/java/j-lo-springaopcglib/index.html AOP(Aspect Orient Progr ...

  5. Zookeeper+Kafka完全分布式实战部署

    Zookeeper+Kafka完全分布式实战部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 其实我之前部署过kafak和zookeeper的完全分布式,集群是可以正常使用没错, ...

  6. Xenserver之设置Xenserver和VM机开机自动启动

    一.设置Xenserver开机自动启动 [root@xenserver-DS-TestServer09 ~]# xe pool-list uuid ( RO) : b1c803a6-88cf-7b24 ...

  7. Java基础之IO流学习总结

    Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输 ...

  8. sqlserver修改计算机名称。

    SELECT @@SERVERNAME As [@@SERVERNAME], CAST(SERVERPROPERTY('MACHINENAME') AS VARCHAR(128)) + COALESC ...

  9. CSS3笔记4

    1.CSS3盒子模型 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  10. STM32学习笔记:【001】时钟树与RCC

    导言 如果学过单片机的同学应该不会陌生,学习51单片机时最经常听到的就是“最小系统”. 最小系统里面少不了晶振,否则单片机无法工作. 单片机需要晶振(时钟源)来工作,那么对于STM32芯片同样如此. ...