%DT:DT实现根据乳腺肿瘤特征向量高精度预测肿瘤的是恶性还是良性
load data.mat a = randperm(569);
Train = data(a(1:500),:);
Test = data(a(501:end),:); P_train = Train(:,3:end);
T_train = Train(:,2); P_test = Test(:,3:end);
T_test = Test(:,2); ctree = ClassificationTree.fit(P_train,T_train); view(ctree);
view(ctree,'mode','graph'); T_sim = predict(ctree,P_test); count_B = length(find(T_train == 1));
count_M = length(find(T_train == 2));
rate_B = count_B / 500;
rate_M = count_M / 500;
total_B = length(find(data(:,2) == 1));
total_M = length(find(data(:,2) == 2));
number_B = length(find(T_test == 1));
number_M = length(find(T_test == 2));
number_B_sim = length(find(T_sim == 1 & T_test == 1));
number_M_sim = length(find(T_sim == 2 & T_test == 2));
disp(['病例总数:' num2str(569)...
' 良性:' num2str(total_B)...
' 恶性:' num2str(total_M)]);
disp(['训练集病例总数:' num2str(500)...
' 良性:' num2str(count_B)...
' 恶性:' num2str(count_M)]);
disp(['测试集病例总数:' num2str(69)...
' 良性:' num2str(number_B)...
' 恶性:' num2str(number_M)]);
disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)...
' 误诊:' num2str(number_B - number_B_sim)...
' 确诊率p1=' num2str(number_B_sim/number_B*100) '%']);
disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)...
' 误诊:' num2str(number_M - number_M_sim)...
' 确诊率p2=' num2str(number_M_sim/number_M*100) '%']);
disp(['乳腺肿瘤整体预测准确率:' num2str((number_M_sim/number_M*100+number_B_sim/number_B*100)/2) '%']); leafs = logspace(1,2,10); N = numel(leafs); err = zeros(N,1);
for n = 1:N
t = ClassificationTree.fit(P_train,T_train,'crossval','on','minleaf',leafs(n)); err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('叶子节点含有的最小样本数');
ylabel('交叉验证误差');
title('叶子节点含有的最小样本数对决策树性能的影响,误差越大性能越差—Jason niu') OptimalTree = ClassificationTree.fit(P_train,T_train,'minleaf',13);
view(OptimalTree,'mode','graph') resubOpt = resubLoss(OptimalTree)
lossOpt = kfoldLoss(crossval(OptimalTree)) resubDefault = resubLoss(ctree)
lossDefault = kfoldLoss(crossval(ctree)) [~,~,~,bestlevel] = cvLoss(ctree,'subtrees','all','treesize','min')
cptree = prune(ctree,'Level',bestlevel);
view(cptree,'mode','graph') resubPrune = resubLoss(cptree)
lossPrune = kfoldLoss(crossval(cptree))

DT:DT实现根据乳腺肿瘤特征向量高精度预测肿瘤的是恶性还是良性—Jason niu的更多相关文章

  1. RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性—Jason niu

    %RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性 load data.mat a = randperm(569); Train = data(a(1:500),:); ...

  2. SVM:SVM之Classification根据已有大量数据集案例,输入已有病例的特征向量实现乳腺癌诊断高准确率预测—Jason niu

    load BreastTissue_data.mat n = randperm(size(matrix,1)); train_matrix = matrix(n(1:80),:); train_lab ...

  3. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  4. 入门系列之Scikit-learn在Python中构建机器学习分类器

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预 ...

  5. DIV+CSS中标签dl dt dd常用的用法

    转自:http://smallpig301.blog.163.com/blog/static/9986093201010262499229/ < dl>< /dl>用来创建一个 ...

  6. HTML 列表 <ol><ul><li><dl><dt><dd>

    <ol>标签-有序列表 定义和用法: <ol>标签定义有序列表. HTML 与 XHTML 之间的差异 在 HTML 4.01 中,ol 元素的 "compact&q ...

  7. dl dt dd定义

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. html dl dt dd标签元素语法结构与使用

    dl dt dd认识及dl dt dd使用方法 <dl> 标签用于定义列表类型标签. dl dt dd目录 dl dt dd介绍 结构语法 dl dt dd案例 dl dt dd总结 一. ...

  9. (转载)dl,dt,dd标记在网页中要充分利用

    (转载)http://www.jzxue.com/html/css/264I6DG6.html 我们在制作网页过程中用到列表时一般会使用<ul>或者<ol>标签,很少用刑< ...

随机推荐

  1. Linux下的启动oracle的EM的命令

    Linux下的启动oracle的EM的命令 1.启动数据库 su - oracle $sqlplus / as sysdba sql>startup 2.启动监听 $lsnrctl LSNRCT ...

  2. Confluence 6 SQL Server 问题解决

    如果你收到了下面的错误信息,检查你给出的 confluenceuser 用户具有所有需要的数据库权限,当你使用 localhost 进行连接的时候. Could not successfully te ...

  3. 暑假里的第八篇Java

    日期:2018.9.1 博客期:008 星期六 这几天刚到学校,Java方面写的少了!目前在做老师头放假前发布的那一套题目,就是哪个Java程序测试卷.至于自己能不能都做出来我自己心里十分清楚!今天就 ...

  4. 手机端rem 用法

    !function(n){ var e=n.document, t=e.documentElement, i=720, d=i/100, o="orientationchange" ...

  5. PHP实现网络Socket及IO多路复用

    一直以来,PHP很少用于socket编程,毕竟是一门脚本语言,效率会成为很大的瓶颈,但是不能说PHP就无法用于socket编程,也不能说PHP的socket编程性能就有多么的低,例如知名的一款PHP ...

  6. linux学习笔记:第三单元 Linux命令及获取帮助

    第三单元 Linux命令及获取帮助 11) 了解Linux命令的语法格式:命令 [选项] [参数]2) 掌握命令格式中命令.选项.参数的具体含义a) 命令:告诉Linux(UNIX)操作系统做(执行) ...

  7. Question Of AI Model Training

    1 模型训练基本步骤 准备原始数据,定义神经网络结构及前向传播算法 定义loss,选择反向传播优化算法 生成Session,在训练数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行 ...

  8. hdu2196 树形dp经典|树的直径

    /* 两种做法 1.求出树直径v1,v2,那么有一个性质:任取一点u,树上到u距离最远的点必定是v1或v2 那么可以一次dfs求树v1 第二次求dis1[],求出所有点到v1的距离,同时求出v2 第三 ...

  9. 使用Bazel构建C/C++项目

    目录 前提 基本概念 速查链接汇总 stage1: 一个package, 一个target stage2: 一个package,多个target stage3: 多package,多target st ...

  10. PowerDesigner逆向生成MYSQL数据库表结构总结

    由于日常数据建模经常使用PowerDesigner,使用逆向工程能更加快速的生成模型提高效率,所以总结使用如下: 1.      安装MYSQL的ODBC驱动 Connector/ODBC 5.1.1 ...