【CF809C】Find a car(动态规划)

题面

洛谷

CF

有一个无穷大的矩阵,第\(i\)行第\(j\)列的数是\((i-1)xor(j-1)+1\),\(q\)次询问,每次询问一个矩形内数小于等于\(k\)的数的和。

题解

询问等价于\(\sum_{i=l}^r\sum_{j=L}^R [i\oplus j\le k]i\oplus j\)。

把询问拆分成四个从\(1\)开始的东西,即\([1..r,1..R],[1..l-1,1..R],[1..r,1..L-1],[1..l-1,1..L-1]\)。

那么就可以大力数位\(dp\)了,设\(f[i][0/1][0/1][0/1]\)表示\(i\)是否卡在界上,\(j\)是否卡在界上,\(i\oplus j\)是否卡在界上,需要同时记录方案数和和。

大力转移一下就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[32][2][2][2],g[32][2][2][2];
int Calc(int L,int R,int K)
{
if(L<0||R<0)return 0;
memset(f,0,sizeof(f));memset(g,0,sizeof(g));f[31][0][0][0]=1;
for(int i=30;~i;--i)
for(int a=0;a<=1;++a)
for(int b=0;b<=1;++b)
for(int k=0;k<=1;++k)
{
if(!f[i+1][a][b][k])continue;
for(int A=0;A<=1;++A)
for(int B=0;B<=1;++B)
{
if(!a&&A&&!(L&(1<<i)))continue;
if(!b&&B&&!(R&(1<<i)))continue;
if(!k&&!(K&(1<<i))&&(A^B))continue;
int na=a,nb=b,nk=k;
if(!A&&(L&(1<<i)))na|=1;
if(!B&&(R&(1<<i)))nb|=1;
if(!(A^B)&&(K&(1<<i)))nk|=1;
add(f[i][na][nb][nk],f[i+1][a][b][k]);
add(g[i][na][nb][nk],g[i+1][a][b][k]);
if(A^B)add(g[i][na][nb][nk],1ll*(1<<i)*f[i+1][a][b][k]%MOD);
}
}
int ret=0;
for(int a=0;a<=1;++a)
for(int b=0;b<=1;++b)
for(int k=0;k<=1;++k)
add(ret,g[0][a][b][k]),add(ret,f[0][a][b][k]);
return ret;
}
int main()
{
int Q=read();
while(Q--)
{
int x1=read()-1,x2=read()-1,y1=read()-1,y2=read()-1,k=read()-1;
int ans1=(Calc(y1,y2,k)+Calc(x1-1,x2-1,k))%MOD;
int ans2=(Calc(x1-1,y2,k)+Calc(y1,x2-1,k))%MOD;
int ans=(ans1+MOD-ans2)%MOD;
printf("%d\n",ans);
}
return 0;
}

【CF809C】Find a car(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. Python+Appium学习篇之WebView处理

    1.认识WebView 实例说明: 当你打开百度阅读APP→VIP全站去广告→用自带的 UI Automator去定位里面的元素,如图: 不管你去定位  '规则详情'  '开通'等等,都会定位不到,只 ...

  2. jenkins 插件介绍

    1.jenkins 利用maven编译,打包,所需插件:Maven Integration: Maven集成插件这个插件提供了Jenkins和Maven的深度集成,无论是好还是坏:项目之间的自动触发取 ...

  3. Spring Boot(1)——开发你的第一款Spring Boot应用(Edition1)

    Spring Boot(1)——开发你的第一款Spring Boot应用(Edition1) 准备工作: java:java 8 或者 java 9: Spring框架:5.0.8.RELEASE或以 ...

  4. Linux基础学习笔记5-软件管理

    包管理器 二进制应用程序的组成部分: 二进制文件.库文件.配置文件.帮助文件 程序包管理器: debian:deb文件.dpkg包管理器 redhat:rpm文件.rpm包管理器 rpm:Redhat ...

  5. RocketMQ消息队列安装

    一.官方安装文档 http://rocketmq.apache.org/docs/quick-start/ 下载地址 https://github.com/apache/rocketmq/releas ...

  6. python设计模式第二十二天【备忘录模式】

    1.应用场景 (1)能保存对象的状态,并能够恢复到之前的状态 2.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ class Originator ...

  7. MyBatis的XML中使用内部类的方式

    内部类需要使用$符号连接,而不是点.,如 com.pingan.job.openapi.model.SMSESBResult$ReceiveResult$ResultInfo 从CSDN论坛查到的. ...

  8. linux 地址解析协议 arp

    随便转载,保留出处:http://www.cnblogs.com/aaron-agu/ arp –na #查看 arp –s 123.253.68.209 00:19:56:6F:87:D4 #添加

  9. 常用css样式处理

    1:如何设置html的input框的高度和宽度! 用style来设置,<input style="width:111px;height:111px">

  10. Ubuntu下安装tomcat

    下面记录了Ubuntu 16.04下安装Tomcat 8.5.9的过程步骤. 1.到官网下载tomcat8.5.9,选择格式为tar.gz.2.通过ftp将下载的tomcat8.5.9压缩包上传到ub ...