CRT and exlucas
CRT
解同余方程,形如\(x \equiv c_i \ mod \ m_i\),我们对每个方程构造一个解满足:
对于第\(i\)个方程:\(x \equiv 1 \ mod \ m_i\),\(x \equiv \ 0 \ mod \ m_j\)\((j!=i)\)
最后\(ans=\sum{x_i*c_i}\ mod \ M\)
其中\(M=\prod m_i\)
考虑构造\(x_i\),我们解同余方程\(\frac{M}{m_i}x\equiv 1\ mod \ m_i\)
所以\(x\)为\(inv(\frac{M}{m_i},m_i)\),最终\(x_i=inv(\frac{M}{m_i},m_i)*mi\)
所以\(ans=\sum c_i*(M/m_i)*inv(\frac{M}{m_i},m_i) \ mod M\)
扩欧合并同余方程
合并两个同余方程
\[\begin{cases}
x \equiv r_1 \pmod {m_1}\\
x \equiv r_2 \pmod {m_2}
\end{cases}\]
我们令\(x=m_1*k_1+r_1=m_2*k_2+r_2\),所以\(m_1*k_1-m_2*k_2=r_2-r_1\),我们只要解出一组\[(k1,k2)\],用扩欧解即可,解出来带入原方程即可得到\(x_0\),方程变为\(x\equiv x_0\ mod \ lcm(m1,m2)\)。
exLucas
不想写了,你可以看这里
CRT and exlucas的更多相关文章
- 4.18 省选模拟赛 无聊的计算器 CRT EXBSGS EXLucas
算是一道很毒瘤的题目 考试的时候码+调了3h才搞定. op==1 显然是快速幂. op==2 有些点可以使用BSGS 不过后面的点是EXBSGS. 这个以前学过了 考试的时候还是懵逼.(当时还是看着花 ...
- Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...
- Luogu2183 礼物 ExLucas、CRT
传送门 证明自己学过exLucas 这题计算的是本质不相同的排列数量,不难得到答案是\(\frac{n!}{\prod\limits_{i=1}^m w_i! \times (n - \sum\lim ...
- [CSP-S模拟测试]:visit(组合数学+exLucas+CRT)
题目传送门(内部题6) 输入格式 第一行包含两个整数$T$,$MOD$:第二行包含两个整数$n$,$m$,表示$dirty$房子的位置. 输出格式 一行一个整数,表示对$MOD$取模之后的答案. 样例 ...
- bzoj3129[Sdoi2013]方程 exlucas+容斥原理
3129: [Sdoi2013]方程 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 582 Solved: 338[Submit][Status][ ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 扩展卢卡斯定理(Exlucas)
题目链接 戳我 前置知识 中国剩余定理(crt)或扩展中国剩余定理(excrt) 乘法逆元 组合数的基本运用 扩展欧几里得(exgcd) 说实话Lucas真的和这个没有什么太大的关系,但是Lucas还 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
随机推荐
- 学习yii2.0——事件
参考:https://www.yiichina.com/doc/guide/2.0/concept-events 事件 yii框架中的事件定义和JavaScript中的事件定义差不多:为某个事件绑定一 ...
- semantic-ui 标题
在semantic-ui中定义了5中标题样式,注意HTML中有h1-h6,而semantic-ui中只有h1-h5. 不过需要注意的是,semantic-ui的标题仍旧使用h1-h5来表示,但是在cl ...
- Spring Mvc和Spring Boot读取Profile方式
spring boot java代码中获取spring.profiles.active - u013042707的专栏 - CSDN博客https://blog.csdn.net/u013042707 ...
- 【Python3练习题 002】企业发放的奖金根据利润提成
# [Python练习题 002]企业发放的奖金根据利润提成.# 利润(I)低于或等于10万元时,奖金可提10%:利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分, ...
- 通过爬虫程序深入浅出java 主从工作模型
随手做的爬虫程序在 https://github.com/rli07/master_java/blob/master/spider.zip 可下载. 这是我做的系统学习图, 可以参考一下 系统架 ...
- [转帖]关于CP936
来源: 知乎:https://www.zhihu.com/question/35609295/answer/63780022 CP936和UTF-8本身和Python是毫无关联的. CP936其实就是 ...
- vue嵌套路由
父组件 (注:to="/Flow/moban_a"这里不是文件加路径,是父组件路由+子组件路由) 路由配置
- Codeforces 1154G Minimum Possible LCM
题目链接:http://codeforces.com/problemset/problem/1154/G 题目大意: 给定n个数,在这些数中选2个数,使这两个数的最小公倍数最小,输出这两个数的下标(如 ...
- 对于tomcat通过catalina.sh停止服务后,tomcat进程没有退出问题解决办法
例:tomcat路径及名称为/data/apache-tomcat-7.0.67/ vim /data/apache-tomcat-7.0.67/bin/catalina.sh 找到org.apach ...
- DELPHI中MDI子窗口的关闭和打开
DELPHI中MDI子窗口的关闭 和打开 Delphi中MDI子窗口的关闭方式默认为缩小而不是关闭,所以当你单击子窗口右上角的关闭按钮时会 发觉该子窗口只是最小化,而不是你预期的那样被 ...