1.基本概念

1.1softmax

softmax函数:一句话概括:是logistic 函数的扩展,将一个p维的数值向量映射成为一个k维的概率值,且这k个值的和为1.

公式:

解释:

  1.2 cross-entry loss

  http://blog.csdn.net/u012494820/article/details/52797916

  https://www.zhihu.com/question/40403377?sort=created

  1.3 Rectifier

  在人工神经网络中,rectifier是一个被定义为的激励函数。

  

  1.4 BP算法

    http://www.cnblogs.com/pannyvan/p/6246789.html

2.实现过程

  2.1产生数据集

    scikit-learn:make_moons函数:产生一个二分类的非线性可分数据集

  2.2训练神经网络

    3层:1个输入层(节点个数由数据维度决定),1个隐藏层(可认为控制,过少不分类,过多过拟合),1个输出层(由类别的数目决定)

    2.2.1如何决定隐藏层节点的数目?具体问题具体分析,看结果的影响

    2.2.2隐藏层激活函数的选择?常见的激活函数有tanh,sigmoid function,ReLUs

    2.2.3输出层函数的选择:softmax函数

  2.3网络如何做出预测?

    正向传播,建立公式:

    

   2.4 学习参数

    即确定W1,b1,W2,b2的值

    2.4.1首先建立cost function,对应softmax的是 cross-entropy loss

          

     2.4.2运用梯度下降来求cost function的最小值

    2.4.3运用BP算法来求梯度值

              

实现一个simple 3层的神经网络的更多相关文章

  1. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  2. 1.4激活函数-带隐层的神经网络tf实战

    激活函数 激活函数----日常不能用线性方程所概括的东西 左图是线性方程,右图是非线性方程 当男生增加到一定程度的时候,喜欢女生的数量不可能无限制增加,更加趋于平稳 在线性基础上套了一个激活函数,使得 ...

  3. [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...

  4. 利用React/anu编写一个弹出层

    本文将一步步介绍如何使用React或anu创建 一个弹出层. React时代,代码都是要经过编译的,我们很多时间都耗在babel与webpack上.因此本文也介绍如何玩webpack与babel. 我 ...

  5. tensorflow 添加一个全连接层

    对于一个全连接层,tensorflow都为我们封装好了. 使用:tf.layers.dense() tf.layers.dense( inputs, units, activation=None, u ...

  6. 实现一个单隐层神经网络python

    看过首席科学家NG的深度学习公开课很久了,一直没有时间做课后编程题,做完想把思路总结下来,仅仅记录编程主线. 一 引用工具包 import numpy as np import matplotlib. ...

  7. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

  8. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  9. 一个故事看懂AI神经网络工作原理

    我是一个AI神经元 我是一个AI神经元,刚刚来到这个世界上,一切对我来说都特别新奇. 之所以叫这个名字,是因为我的工作有点像人类身体中的神经元. 人体中的神经元可以传递生物信号,给它输入一个信号,它经 ...

随机推荐

  1. appium 移动端自动化测试一

    最近公司决定使用appium为主体框架做一个移动端得自动化测试系统,我会陆续记录项目得进展. 1.首先是appium环境得搭建, 需要安装appium-server ,appium-desktop, ...

  2. 12. Integer to Roman (JAVA)

    Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. Symbol Value I 1 ...

  3. jdbc导致的问题

    遇到的问题:利用eclipse编写web project,Tomcat服务器成功开启,也通过build path导入了jdbc的路径,但是还是出现下面问题 连接数据库代码如下: 连接数据库语句没有问题 ...

  4. JVM、垃圾收集器

    1.Java虚拟机原理 所谓虚拟机,就是一台虚拟的机器.他是一款软件,用来执行一系列虚拟计算指令,大体上虚拟机可以分为系统虚拟机和程序虚拟机, 大名鼎鼎的Vmare就属于系统虚拟机,他完全是对物理计算 ...

  5. spring boot1.0 集成quartz 动态配置定时任务

    转载自 https://www.imooc.com/article/36278 一.Quartz简介了解 Quartz Quartz 是一个完全由 Java 编写的开源作业调度框架,为在 Java 应 ...

  6. java注解小随笔

    注解分类 编码期间:SOURCE 编译期间:CLASS 运行期间:RUNTIME 自定义注解 //CLASS/RUNTIME/SOURCE 生效时机 @Retention(RetentionPolic ...

  7. .net WebApi中使用swagger生成WepApi集成测试工具

    我在WebApi中使用swagger的时候发现会出现很多问题,搜索很多地方都没找到完全解决问题的方法,后面自己解决了,希望对于遇到同样问题朋友有帮助.我将先一步一步的演示项目中解决swagger遇到问 ...

  8. linux-kernel-4.4 移植 (1)启动

    开发环境:win10 64位 + VMware12 + Ubuntu14.04 32位 工具链:linaro提供的gcc-linaro-6.1.1-2016.08-x86_64_arm-linux-g ...

  9. leetcode8:字符串转整数 (atoi)

    实现 atoi,将字符串转为整数. 在找到第一个非空字符之前,需要移除掉字符串中的空格字符.如果第一个非空字符是正号或负号,选取该符号,并将其与后面尽可能多的连续的数字组合起来,这部分字符即为整数的值 ...

  10. mysql学习--1.事务

    转载自孤傲苍狼的博客:http://www.cnblogs.com/xdp-gacl/p/3984001.html 四.事务的四大特性(ACID) 4.1.原子性(Atomicity) 原子性是指事务 ...