关于时钟设置原理:

关于如何设置系统时钟的思路。

其中锁定时间需要一个寄存器,PLL需要一个寄存器(MPLLCL),分频还需要一个寄存器,总计三个寄存器。步骤如下:

1. 上电后,FCLK=Fin

2. 启动MPLL,经过LOCKTIME后,频率达到要求。

3. 具体寄存器设置如下:

的比例。

If HDIVN is not 0, the CPU bus mode has to be changed from the fast bus mode to the asynchronous

bus mode using following instructions(S3C2440 does not support synchronous bus mode).

MMU_SetAsyncBusMode

mrc p15,0,r0,c1,c0,0

orr r0,r0,#R1_nF:OR:R1_iA

mcr p15,0,r0,c1,c0,0

代码例程如下(此处仅为时钟初始化代码):

/*

* 关闭WATCHDOG,否则CPU会不断重启

*/

void disable_watch_dog(void)

{

WTCON = 0; // 关闭WATCHDOG很简单,往这个寄存器写0即可

}

#define S3C2410_MPLL_200MHZ ((0x5c<<12)|(0x04<<4)|(0x00))

#define S3C2440_MPLL_200MHZ ((0x5c<<12)|(0x01<<4)|(0x02))

/*

* 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV

* 有如下计算公式:

* S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s)

* S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s)

* 其中: m = MDIV + 8, p = PDIV + 2, s = SDIV

* 对于本开发板,Fin = 12MHz

* 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4,

* FCLK=200MHz,HCLK=100MHz,PCLK=50MHz

*/

void clock_init(void)

{

// LOCKTIME = 0x00ffffff; // 使用默认值即可

CLKDIVN = 0x03; // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1

/* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */

__asm__(

"mrc p15, 0, r1, c1, c0, 0\n" /* 读出控制寄存器 */ 

"orr r1, r1, #0xc0000000\n" /* 设置为“asynchronous bus mode” */

"mcr p15, 0, r1, c1, c0, 0\n" /* 写入控制寄存器 */

);

/* 判断是S3C2410还是S3C2440 */

if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))

{

MPLLCON = S3C2410_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */

}

else

{

MPLLCON = S3C2440_MPLL_200MHZ; /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */

}

}

UART的使用

1. 原理图

2. 数据传输流程

PS:S3C2440有深度为64bit的FIFO

UART的使用流程:

Ucon1,ucon2,ucon3的具体使用查芯片手册

PS:由于使用了SDRAM,但芯片上电后处于片内ram,即0地址,需要使用位置无关码来避免错误!

位置无关码实例:

void memsetup(void)

{

volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;

/* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值

* 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到

* SDRAM之前就可以在steppingstone中运行

*/

/* 存储控制器13个寄存器的值 */

p[0] = 0x22011110; //BWSCON

p[1] = 0x00000700; //BANKCON0

p[2] = 0x00000700; //BANKCON1

p[3] = 0x00000700; //BANKCON2

p[4] = 0x00000700; //BANKCON3

p[5] = 0x00000700; //BANKCON4

p[6] = 0x00000700; //BANKCON5

p[7] = 0x00018005; //BANKCON6

p[8] = 0x00018005; //BANKCON7

/* REFRESH,

* HCLK=12MHz: 0x008C07A3,

* HCLK=100MHz: 0x008C04F4

*/ 

p[9] = 0x008C04F4;

p[10] = 0x000000B1; //BANKSIZE

p[11] = 0x00000030; //MRSRB6

p[12] = 0x00000030; //MRSRB7

bl disable_watch_dog @ 关闭WATCHDOG,否则CPU会不断重启

// bl是位置无关码,相当于:PCnew = PC + 偏移

// PCnew = (4+8) + 0x28 = 0x34

//ldr pc, =disable_watch_dog /* 这样写将出错 */

时钟系统与UART的更多相关文章

  1. 9.S5PV210的时钟系统

    1.时钟域:MSYS.DSYS.PSYS(1)因为S5PV210的时钟体系比较复杂,内部外设模块太多,因此把整个内部的时钟划分为3大块,叫做3个域.(2)MSYS: CPU(Cortex-A8内核). ...

  2. S3C2440时钟系统详解

    在讲述系统时钟之前,因为这些设备都是挂靠在系统时钟上的,所以必须先说系统时钟,S3C2440的时钟系统如下 外部时钟源分两种,晶振或者外部频率,由om3-2选择,时钟电路根据两种选择也有两种 我们来分 ...

  3. SoC时钟系统简介

    1.SoC的时钟获得一般有: * 外部直接输入时钟信号,SoC有个引脚用来输入外部时钟信号,用的很少. * 外部晶振+内部时钟发生器产生时钟,大部分低频单片机都是这么工作的. * 外部晶振+内部时钟发 ...

  4. STM32时钟系统

    一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率 ...

  5. 总结:S5PV210时钟系统

    在数据手册<S5PV210_UM_REV1.1>中的section 02_system/3 CLOCK CONTROLLER(354页)   一.时钟域 在S5PV210的SoC中,时钟系 ...

  6. STM8时钟系统详解

    就我个人看来,研究一块单片机,分为新手和老手两种模式,新人迫切的想先用,你得告诉他们怎么样最快的写出一个能跑起来的程序,告诉他们每一个外设的使用方式,老手不同,用的单片机多了外设对于他们而言没太多好奇 ...

  7. Stm32复习之时钟系统

    地点:南图 这部分的内容是整个STM32学习知识的核心,不管是什么微控制器处理器,时钟系统都是其核心类似于人之心脏,因此学好理解这一章节至关重要. 为了便于理解这一系统,将从以下几个层次来讲.(忘了是 ...

  8. 关于STM32时钟系统

    初学STM32,感觉最蛋疼的是它的时钟系统,每次看到它的那个时钟树就有点晕,虽然看了很多这方面的资料,甚至也已经写过很多STM32的模块代码,做过一些小项目,但一直还是对这一块模模糊糊,似懂非懂,所以 ...

  9. IDC:时钟系统

    ylbtech-IDC:时钟系统 主要应用于要求有统一时间进行生产,调度的单位如:电力,机场.轻轨.地铁.体育场馆.酒店.医院.部队.油田.水利工程等领域.大区域时钟系统主要由母钟和多台子钟构成. 1 ...

随机推荐

  1. Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. html和css入门 (三)

    文本样式 color 文本颜色 属性名 color 属性值 预定义的颜色名 | 十六进制值的颜色值 | RGB颜色值 默认值 依赖用户代理 描述 设置文本的颜色 direction 文本方向( 属性名 ...

  3. [摘]全文检索引擎Solr系列—–全文检索基本原理

    原文链接--http://www.importnew.com/12707.html 全文检索引擎Solr系列—–全文检索基本原理 2014/08/18 | 分类: 基础技术, 教程 | 2 条评论 | ...

  4. 在 CentOS6 上安装 GraphicsMagick-1.3.30

    在 CentOS6 上安装 GraphicsMagick-1.3.30 1.简介: 1.1.在介绍 GraphicsMagick 前我们不得不先介绍下 ImageMagick: ImageMagick ...

  5. 软件项目技术点(1)——Tween算法及缓动效果

    AxeSlide软件项目梳理   canvas绘图系列知识点整理 Tween算法及缓动效果 软件里在切换步序时需要有过渡动画效果,从当前位置的画面缓动到目标位置的画面.动画效果可重新查看文章系列第一篇 ...

  6. 原生js制作标题与内容保持4行的效果

    在制作网页或移动端有时会用到一个效果,类似文章标题和文章描述的排列总是保持一样的行数,要么标题总是一行,多出的省略,要么标题内容1:3或2:2或3:1这样,今天练习这样的效果. 实现的原理:给标题和内 ...

  7. 三重for循环实现对二维数组的按列排序(JavaScript)

    由C语言联想到的:三重for循环实现对二维数组的按列排序,并且牵扯到数据结构. 自己写的,水平有限,本文属于原创,可能存在错误,忘指正~ function circle() { var a = [ [ ...

  8. Oracle INSERT ALL 语句介绍

    描述 Oracle INSERT ALL 语句用来用一个 INSERT 语句添加多行.该行可以只使用一个SQL命令插入到一个表或多个表. 语法 Oracle INSERT ALL 语法如下: INSE ...

  9. ArcSDE 10.2 for Oracle 12C安装注意事项

    ArcSDE 10.2 for Oracle 12C安装注意事项 1.环境说明 从ArcSDE10.2.1开始支持Oracle 12C. 2.安装注意事项 SDE空间数据库可以安装到PDB中,使用Cr ...

  10. Day01——Python简介

    一.Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC ...