前言

大名鼎鼎的男人八题,终于见识了...

题面

http://poj.org/problem?id=1742

分析

§ 1 多重背包

这很显然是一个完全背包问题,考虑转移方程:

DP[i][j]表示用前i种硬币能否取到金额j,ture表示可以,false表示不行。

则有

DP[i][j] = DP[i - 1][j] | DP[i - 1][j - k * Ai], 0 ≤ k ≤ Ci, j - k * Ai ≥ 0

这是一个O(N3)的算法,考虑到数据范围1 ≤ N ≤ 100, M ≤ 100000, 1 ≤ Ci ≤ 1000,显然会超时。

§ 2 优化

考虑上面的转移方程,每个方程只记录了可行解的存在与否;而事实上,当前第i种硬币的剩余数也是一个状态,而此前的方程关于这个状态是靠k来枚举。

我们可以考虑一下完全背包和多重背包的异处,正是多了一个物品数量的限制,才使我们的枚举增加了一个维度,导致时间复杂度增加;而我们同时还要记录当前状态可达到的最大价值(普通多重背包),因而枚举选的物品数量的循环时必不可少的。但是,在这个问题中,我们只需要判断可行解的存在性。因此,我们可以用DP[i][j]来记录用前i种硬币,在取到金额j的情况下,第i种硬币剩余的最大数量。(不能用-1表示)

则有

DP[i][j] =

  • C[i], DP[i - 1][j] ≥ 0(如果前(i-1)种硬币已经足以凑出这个金额j,那么就根本用不着第种硬币,因此全部剩下,也就是Ci
  • -1, DP[i][j - A[i]] ≤ 0 || j < A[i](若前面凑更小的面额时已经用尽第i种硬币,或者当前硬币的面额太大了,那么就凑不出来,即-1)
  • DP[i][j - A[i]] - 1

注意这些条件时依次判断的。

(如果以上看了仍然不懂的同学,可以去看这个dalao写的详细推理过程 http://www.hankcs.com/program/cpp/poj-1742-coins.html

因而,时间复杂度就被降到了O(N2)。

还有很重要的一点,之间建N * M的数组是会超空间的,因此,要使用滚动数组。

§ 3 总结

事实上,这题降维就是考的只判断解是否可行的条件。一般来说,这种思路很难想到,很少人会去想写这样一个多重背包的方程,但是,正是这个问题独特的性质,使得它可行。

而且这个问题还有一种用单调队列的写法,目前还没有弄懂,不过也是多重背包的一大利器。

§ 4 参考代码

// POJ1742
// Coins
// LouTiancheng@POJ
#include <cstdio>
#include <cstring>
#include <algorithm>
const int MAXN = ;
const int MAXM = ; int N, M, DP[][MAXM] = {}, A[MAXN], C[MAXN], i, j; void solve(); int main() {
while (scanf("%d%d", &N, &M) == ) {
if (N == || M == ) break;
solve();
}
return ;
} void solve() {
for (i = ; i < N; i++) scanf("%d", &A[i]);
for (i = ; i < N; i++) scanf("%d", &C[i]);
int *prv = DP[], *nxt = DP[];
memset(prv + , -, sizeof(int) * M);
prv[] = ;
for (i = ; i < N; i++) {
for (j = ; j <= M; j++)
if (prv[j] >= ) nxt[j] = C[i];
else if (j < A[i] || nxt[j - A[i]] <= ) nxt[j] = -;
else nxt[j] = nxt[j - A[i]] - ;
std::swap(prv, nxt);
}
int ans = ;
for (i = ; i <= M; i++)
if (prv[i] >= ) ans++;
printf("%d\n", ans);
}

另外,有问题的童鞋欢迎提问~

谢谢大家!

POJ1742 Coins(男人八题之一)的更多相关文章

  1. poj 1737男人八题之一 orz ltc

    这是楼教主的男人八题之一.很高兴我能做八分之一的男人了. 题目大意:求有n个顶点的连通图有多少个. 解法: 1.  用总数减去不联通的图(网上说可以,我觉得时间悬) 2.    用动态规划(数学递推) ...

  2. poj 1741 楼教主男人八题之中的一个:树分治

    http://poj.org/problem? id=1741 Description Give a tree with n vertices,each edge has a length(posit ...

  3. Cogs 1714. [POJ1741][男人八题]树上的点对(点分治)

    [POJ1741][男人八题]树上的点对 ★★★ 输入文件:poj1741_tree.in 输出文件:poj1741_tree.out 简单对比 时间限制:1 s 内存限制:256 MB [题目描述] ...

  4. 新男人八题---AStringGame

    终于完成进度男人1/8,为了这题学了sam= = 题意先有一个串,n个子串,两个人轮流每次在子串上加字符,要求加完后还是原串的子串,最后不能加的就是输者,求赢的人 解法:sam之后在构造的状态图上跑s ...

  5. poj 1742(好题,楼天城男人八题,混合背包)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 33269   Accepted: 11295 Descripti ...

  6. 博弈论(男人八题):POJ 1740 A New Stone Game

    A New Stone Game Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5694   Accepted: 3119 ...

  7. poj 1743 男人八题之后缀数组求最长不可重叠最长重复子串

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14874   Accepted: 5118 De ...

  8. nyoj137 取石子(三) 楼教主男人八题之一

    思路:一堆时,N态.两堆时,当两堆数量相同,P态,不同为N态.三堆时,先手可以变成两堆一样的,必胜N态. 此时可以总结规律:堆数为偶数可能且石子数都是两两相同的,为P态.分析四堆时,当四堆中两两数量一 ...

  9. 《学习OpenCV》练习题第四章第八题ab

    这道题是利用OpenCV例子程序里自带的人脸检测程序,做点图像的复制操作以及alpha融合. 说明:人脸检测的程序我参照了网上现有的例子程序,没有用我用的OpenCV版本(2.4.5)的facedet ...

随机推荐

  1. hdu1874畅通工程续(floyd)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. APP功能性测试-2

    安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...

  3. 第六模块:WEB框架开发 第1章·Django框架开发1~50

    01-Django基础介绍 02-Web应用程序1 03-Web应用程序2 04-http请求协议1 05-http请求协议2 06-http协议之响应协议 07-wsgire模块1 08-wsgir ...

  4. 关于java获取网页内容

    最近项目需求,做一些新闻站点的爬取工作.1.简单的jsoup爬取,静态页面形式: String url="a.atimo.cn";//静态页面链接地址Document doc = ...

  5. Python3 小工具-ICMP扫描

    from scapy.all import * import optparse import threading import os def scan(ipt): pkt=IP(dst=ipt)/IC ...

  6. OpenCV学习4-----K-Nearest Neighbors(KNN)demo

    最近用到KNN方法,学习一下OpenCV给出的demo. demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点 如 ...

  7. Python3 数据类型-字典

    字典是一种可变数据类型,且可存储任意类型对象. 字典使用大括号"{}"括起来,由键(key)和值(values)组成,键只能使用不可变类型定义,值可以使用可变类型{'键':'值'} ...

  8. 对Objective-C中runtime的理解

    Objective-C是面向runtime(运行时)的语言,在应用程序运行的时候来决定函数内部实现什么以及做出其它决定的语言.程序员可以在程序运行时创建,检 查,修改类,对象和它们的方法,Object ...

  9. hexo设置permalink-避免url中出现中文

    hexo博客初始化的url是年月日+题目:year/:month/:day/:title/,这样的url不便与分享,中文会乱吗,而且一旦修改了题目(我相信大部分人的题目都是中文)就会导致之前分享的ur ...

  10. BAT批处理(五)

    批处理程序 一.交互界面设计 没啥说的,看看设计的菜单界面吧:@echo offclstitle 终极多功能修复:menuclscolor 0Aecho.echo ================== ...