【BZOJ4504】K个串

Description

兔子们在玩k个串的游戏。首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次)。兔子们想知道,在这个数字序列所有连续的子串中,按照以上方式统计其所有数字之和,第k大的和是多少。

Input

第一行,两个整数n和k,分别表示长度为n的数字序列和想要统计的第k大的和
接下里一行n个数a_i,表示这个数字序列

Output

一行一个整数,表示第k大的和

Sample Input

7 5
3 -2 1 2 2 1 3 -2

Sample Output

4

HINT

1 <= n <= 100000, 1 <= k <= 200000, 0 <= |a_i| <= 10^9数据保证存在第 k 大的和

题解:沿用超级钢琴的思路。用堆维护五元组(x,a,b,y,val)表示右端点为x,左端点在[a,b]中,最优的左端点是y,且y到x的和是val。然后每次从优先队列中取出val最大的,将其删去,在[a,y)和(y,b]中分别寻找新的y,然后将其扔回到队列中去。

问题是如何找y呢?考虑可持久化线段树。因为每个区间都是某个前缀的后缀,所以如果当前的右端点是x,x的前驱是pre[x],我们只需要在x的线段树中将(pre[x],x]的权值都加上val[x]即可。可以用标记永久化来加速主席树的区间修改。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
using namespace std;
const int maxn=100010;
typedef long long ll;
int n,m,tot;
ll v[maxn];
int rt[maxn],pre[maxn];
map<ll,int> last;
struct node
{
int l,r,x,y;
ll v;
node() {}
node(int a,int b,int c,ll d,int e) {x=a,l=b,r=c,v=d,y=e;}
bool operator < (const node &a) const {return v<a.v;}
};
struct sag
{
ll x; int y;
sag() {x=-1ll<<60,y=0;}
}s[maxn*100];
int ls[maxn*100],rs[maxn*100];
ll tag[maxn*100];
priority_queue<node> q;
sag operator + (const sag &a,const sag &b)
{
return ((a.x==b.x)?(a.y>b.y):(a.x>b.x))?a:b;
}
void build(int l,int r,int &x)
{
x=++tot,s[x].x=0,s[x].y=l;
if(l==r) return ;
int mid=(l+r)>>1;
build(l,mid,ls[x]),build(mid+1,r,rs[x]);
}
void insert(int x,int &y,int l,int r,int a,int b,ll c)
{
y=++tot,s[y]=s[x],ls[y]=ls[x],rs[y]=rs[x],tag[y]=tag[x];
if(a<=l&&r<=b)
{
s[y].x+=c,tag[y]+=c;
return ;
}
int mid=(l+r)>>1;
if(a<=mid) insert(ls[x],ls[y],l,mid,a,b,c);
if(b>mid) insert(rs[x],rs[y],mid+1,r,a,b,c);
s[y]=s[ls[y]]+s[rs[y]];
s[y].x+=tag[y];
}
sag query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return s[x];
int mid=(l+r)>>1;
sag ret;
ret.y=l;
if(a<=mid) ret=ret+query(l,mid,ls[x],a,b);
if(b>mid) ret=ret+query(mid+1,r,rs[x],a,b);
ret.x+=tag[x];
return ret;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,a,b,x;
ll y;
sag t;
node u;
build(1,n,rt[0]);
for(i=1;i<=n;i++)
{
v[i]=rd(),pre[i]=last[v[i]],last[v[i]]=i;
insert(rt[i-1],rt[i],1,n,pre[i]+1,i,v[i]);
t=query(1,n,rt[i],1,i);
q.push(node(i,1,i,t.x,t.y));
}
while(m--)
{
u=q.top(),q.pop();
x=u.x,a=u.l,b=u.r,y=u.y;
if(!m)
{
printf("%lld\n",u.v);
return 0;
}
if(a<y)
{
t=query(1,n,rt[x],a,y-1);
q.push(node(x,a,y-1,t.x,t.y));
}
if(b>y)
{
t=query(1,n,rt[x],y+1,b);
q.push(node(x,y+1,b,t.x,t.y));
}
}
return 0;
}//8 5 3 -2 1 2 2 1 3 -2

【BZOJ4504】K个串 可持久化线段树+堆的更多相关文章

  1. bzoj 4504: K个串 可持久化线段树+堆

    题目: Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一 个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想 ...

  2. hihocoder#1046 K个串 可持久化线段树 + 堆

    首先考虑二分,然后发现不可行.... 注意到\(k\)十分小,尝试从这里突破 首先用扫描线来处理出以每个节点为右端点的区间的权值和,用可持久化线段树存下来 在所有的右端点相同的区间中,挑一个权值最大的 ...

  3. SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)

    题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...

  4. [POJ2104] 区间第k大数 [区间第k大数,可持久化线段树模板题]

    可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include &l ...

  5. 树上第k小,可持久化线段树+倍增lca

    给定一颗树,树的每个结点都有权值, 有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少. 每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树 c[ro ...

  6. [POJ2104] K – th Number (可持久化线段树 主席树)

    题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...

  7. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)

    可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总 ...

  9. 主席树(可持久化线段树) 静态第k大

    可持久化数据结构介绍 可持久化数据结构是保存数据结构修改的每一个历史版本,新版本与旧版本相比,修改了某个区域,但是大多数的区域是没有改变的, 所以可以将新版本相对于旧版本未修改的区域指向旧版本的该区域 ...

随机推荐

  1. Python-Mac OS X EI Capitan下安装Scrapy

    sudo pip install scrapy --ignore-installed six #sudo pip install scrapy --upgrade --ignore-installed ...

  2. Python-理解装饰器

    文章先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: @makebold @makeitalic def say(): return "Hello" 打印出 ...

  3. TypeScript 映射类型

    typescript支持定义类型加入推导式后产生新的类型 属性不变 但会改变对象的使用方式 这个是类型Person中加入ReadOnly推导出的新类型 他的属性全部是只读的 这个是推导出部分属性 这是 ...

  4. java 解析webservice 中的soapheader

    //从MessageContet中获取头域中的值 public HeaderBean getBeanFromRequest(org.apache.axis2.context.MessageContex ...

  5. Fiddler设置代理抓手机包

    启动Fiddler,打开菜单栏中的 Tools > Fiddler Options,打开“Fiddler Options”对话框. 在Fiddler Options”对话框切换到“Connect ...

  6. unity, Awake的调用时机

    Awake是在setActive(true)时才会被调用,不过如果再setActive(false)然后重新setActive(true)的话,Awake就不会再被调用了,也就是说Awake能保证仅被 ...

  7. Javascript实现真实字符串剩余字数提示

    //文本框剩余字数提示(字符大小) function textLimitCheckSj(thisArea, maxLength, SpanId) { var str = thisArea.value; ...

  8. python3 解析xml

    转载:http://www.jb51.net/article/79494.htm 这篇文章主要为大家详细介绍了深入解读Python解析XML的几种方式,以ElementTree模块为例,演示具体使用方 ...

  9. 1.2.3 Task and Back Stack - 任务和回退堆

    一个应用通常包含多个Activities.每个activity的设计应该围绕着某种指定类型的action,如果这样做了,用户就可以执行该action,也可以用它来开启另外的activity.例如,邮件 ...

  10. Django1.6 +wsgi 部署到Apache2 的步骤。

    网上很多教程都是关于1.6之前的版本,很多都不适用,经历告诉我们最靠谱的还是官方文档. 一个Demo例子: 以 python shell开发的方式部署没有问题,但当独立部署到Apache2的过程非常艰 ...